BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21506181)

  • 1. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights.
    Gärtner F; Boddien A; Barsch E; Fumino K; Losse S; Junge H; Hollmann D; Brückner A; Ludwig R; Beller M
    Chemistry; 2011 May; 17(23):6425-36. PubMed ID: 21506181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction.
    Gärtner F; Cozzula D; Losse S; Boddien A; Anilkumar G; Junge H; Schulz T; Marquet N; Spannenberg A; Gladiali S; Beller M
    Chemistry; 2011 Jun; 17(25):6998-7006. PubMed ID: 21557356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of new iridium photosensitizers for catalytic hydrogen generation from water.
    Gärtner F; Denurra S; Losse S; Neubauer A; Boddien A; Gopinathan A; Spannenberg A; Junge H; Lochbrunner S; Blug M; Hoch S; Busse J; Gladiali S; Beller M
    Chemistry; 2012 Mar; 18(11):3220-5. PubMed ID: 22334566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic water reduction and study of the formation of Fe(i)Fe(0) species in diiron catalyst systems.
    Li X; Wang M; Chen L; Wang X; Dong J; Sun L
    ChemSusChem; 2012 May; 5(5):913-9. PubMed ID: 22407945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes.
    Hansen S; Pohl MM; Klahn M; Spannenberg A; Beweries T
    ChemSusChem; 2013 Jan; 6(1):92-101. PubMed ID: 23147800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodissociation of the phosphine-substituted transition metal carbonyl complexes Cr(CO)(5)L and Fe(CO)(4)L: a theoretical study.
    Goumans TP; Ehlers AW; van Hemert MC; Rosa A; Baerends EJ; Lammertsma K
    J Am Chem Soc; 2003 Mar; 125(12):3558-67. PubMed ID: 12643718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of ligand exchange in hydrogen production from cobaloxime-containing photocatalytic systems.
    McCormick TM; Han Z; Weinberg DJ; Brennessel WW; Holland PL; Eisenberg R
    Inorg Chem; 2011 Nov; 50(21):10660-6. PubMed ID: 21980978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.
    Mellmann D; Barsch E; Bauer M; Grabow K; Boddien A; Kammer A; Sponholz P; Bentrup U; Jackstell R; Junge H; Laurenczy G; Ludwig R; Beller M
    Chemistry; 2014 Oct; 20(42):13589-602. PubMed ID: 25196789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphine coordination to a cobalt diimine-dioxime catalyst increases stability during light-driven H2 production.
    Zhang P; Jacques PA; Chavarot-Kerlidou M; Wang M; Sun L; Fontecave M; Artero V
    Inorg Chem; 2012 Feb; 51(4):2115-20. PubMed ID: 22313315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light induced catalytic water reduction without an electron relay.
    Tinker LL; McDaniel ND; Curtin PN; Smith CK; Ireland MJ; Bernhard S
    Chemistry; 2007; 13(31):8726-32. PubMed ID: 17654456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes.
    Cline ED; Adamson SE; Bernhard S
    Inorg Chem; 2008 Nov; 47(22):10378-88. PubMed ID: 18939819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.
    Wang X; Shih K; Li XY
    Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic C-H bond amination from high-spin iron imido complexes.
    King ER; Hennessy ET; Betley TA
    J Am Chem Soc; 2011 Apr; 133(13):4917-23. PubMed ID: 21405138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient photocatalytic water reduction with robust iridium(III) photosensitizers containing arylsilyl substituents.
    Whang DR; Sakai K; Park SY
    Angew Chem Int Ed Engl; 2013 Oct; 52(44):11612-5. PubMed ID: 24027139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation.
    Huang Z; Luo Z; Geletii YV; Vickers JW; Yin Q; Wu D; Hou Y; Ding Y; Song J; Musaev DG; Hill CL; Lian T
    J Am Chem Soc; 2011 Feb; 133(7):2068-71. PubMed ID: 21268644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic H2 production from water with rhenium and cobalt complexes.
    Probst B; Guttentag M; Rodenberg A; Hamm P; Alberto R
    Inorg Chem; 2011 Apr; 50(8):3404-12. PubMed ID: 21366324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems.
    Han Z; Shen L; Brennessel WW; Holland PL; Eisenberg R
    J Am Chem Soc; 2013 Oct; 135(39):14659-69. PubMed ID: 24004329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.