BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 21506229)

  • 21. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxynitrile lyase from Hevea brasiliensis: molecular characterization and mechanism of enzyme catalysis.
    Hasslacher M; Kratky C; Griengl H; Schwab H; Kohlwein SD
    Proteins; 1997 Mar; 27(3):438-49. PubMed ID: 9094745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily.
    Lenfant N; Hotelier T; Bourne Y; Marchot P; Chatonnet A
    Chem Biol Interact; 2013 Mar; 203(1):266-8. PubMed ID: 23010363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving catalytic function by ProSAR-driven enzyme evolution.
    Fox RJ; Davis SC; Mundorff EC; Newman LM; Gavrilovic V; Ma SK; Chung LM; Ching C; Tam S; Muley S; Grate J; Gruber J; Whitman JC; Sheldon RA; Huisman GW
    Nat Biotechnol; 2007 Mar; 25(3):338-44. PubMed ID: 17322872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Converting an esterase into an epoxide hydrolase.
    Jochens H; Stiba K; Savile C; Fujii R; Yu JG; Gerassenkov T; Kazlauskas RJ; Bornscheuer UT
    Angew Chem Int Ed Engl; 2009; 48(19):3532-5. PubMed ID: 19350592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fold prediction and comparative modeling of Bdm1: a probable alpha/beta hydrolase associated with hot water epilepsy.
    Bhaduri A; Krishnaswamy L; Ullal GR; Panicker MM; Sowdhamini R
    J Mol Model; 2003 Feb; 9(1):3-8. PubMed ID: 12638006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determinants of thermostability in the cytochrome P450 fold.
    Harris KL; Thomson RES; Strohmaier SJ; Gumulya Y; Gillam EMJ
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):97-115. PubMed ID: 28822812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioengineering. Working outside the protein-synthesis rules.
    Gewolb J
    Science; 2002 Mar; 295(5563):2205-7. PubMed ID: 11910091
    [No Abstract]   [Full Text] [Related]  

  • 32. Toward protein engineering for phytoremediation: possibilities and challenges.
    Jez JM
    Int J Phytoremediation; 2011; 13 Suppl 1():77-89. PubMed ID: 22046752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The alpha/beta-hydrolase fold 3DM database (ABHDB) as a tool for protein engineering.
    Kourist R; Jochens H; Bartsch S; Kuipers R; Padhi SK; Gall M; Böttcher D; Joosten HJ; Bornscheuer UT
    Chembiochem; 2010 Aug; 11(12):1635-43. PubMed ID: 20593436
    [No Abstract]   [Full Text] [Related]  

  • 35. J1 acylase, a glutaryl-7-aminocephalosporanic acid acylase from Bacillus laterosporus J1, is a member of the alpha/beta-hydrolase fold superfamily.
    Yau MH; Wang J; Tsang PW; Fong WP
    FEBS Lett; 2006 Feb; 580(5):1465-71. PubMed ID: 16469317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering.
    Prokop Z; Sato Y; Brezovsky J; Mozga T; Chaloupkova R; Koudelakova T; Jerabek P; Stepankova V; Natsume R; van Leeuwen JG; Janssen DB; Florian J; Nagata Y; Senda T; Damborsky J
    Angew Chem Int Ed Engl; 2010 Aug; 49(35):6111-5. PubMed ID: 20645368
    [No Abstract]   [Full Text] [Related]  

  • 37. Microbial carboxyl esterases: classification, properties and application in biocatalysis.
    Bornscheuer UT
    FEMS Microbiol Rev; 2002 Mar; 26(1):73-81. PubMed ID: 12007643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation.
    Schleberger C; Sachelaru P; Brandsch R; Schulz GE
    J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure.
    Krooshof GH; Kwant EM; Damborský J; Koca J; Janssen DB
    Biochemistry; 1997 Aug; 36(31):9571-80. PubMed ID: 9236003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
    Mian IS
    Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.