BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21506284)

  • 1. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene.
    Xu Z; Spring DR; Yoon J
    Chem Asian J; 2011 Aug; 6(8):2114-22. PubMed ID: 21506284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH.
    Xu Z; Singh NJ; Lim J; Pan J; Kim HN; Park S; Kim KS; Yoon J
    J Am Chem Soc; 2009 Oct; 131(42):15528-33. PubMed ID: 19919166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent and electrochemical sensing of polyphosphate nucleotides by ferrocene functionalised with two Zn(II)(TACN)(pyrene) complexes.
    Zeng Z; Torriero AA; Bond AM; Spiccia L
    Chemistry; 2010 Aug; 16(30):9154-63. PubMed ID: 20623565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution.
    Zhang M; Ma WJ; He CT; Jiang L; Lu TB
    Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor.
    Ojida A; Takashima I; Kohira T; Nonaka H; Hamachi I
    J Am Chem Soc; 2008 Sep; 130(36):12095-101. PubMed ID: 18700758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When is weaker better? Design of an ADP sensor with weak ADP affinity, but still selective against ATP.
    Hackney DD
    ACS Chem Biol; 2010 Apr; 5(4):353-4. PubMed ID: 20394442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cholic acid-based fluorescent chemosenor for the detection of ATP.
    Wang H; Chan WH
    Org Biomol Chem; 2008 Jan; 6(1):162-8. PubMed ID: 18075662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates.
    Lee JH; Jeong AR; Jung JH; Park CM; Hong JI
    J Org Chem; 2011 Jan; 76(2):417-23. PubMed ID: 21174420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ratiometric fluorescent on-off Zn2+ chemosensor based on a tripropargylamine pyrene azide click adduct.
    Ingale SA; Seela F
    J Org Chem; 2012 Oct; 77(20):9352-6. PubMed ID: 23030804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor.
    Strianese M; Milione S; Maranzana A; Grassi A; Pellecchia C
    Chem Commun (Camb); 2012 Dec; 48(93):11419-21. PubMed ID: 23086379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bis- and tris-naphthoimidazolium derivatives for the fluorescent recognition of ATP and GTP in 100% aqueous solution.
    Xu Z; Song NR; Moon JH; Lee JY; Yoon J
    Org Biomol Chem; 2011 Dec; 9(24):8340-5. PubMed ID: 22052071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon.
    Shi C; Gu H; Ma C
    Anal Biochem; 2010 May; 400(1):99-102. PubMed ID: 20056100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labile zinc-assisted biological phosphate chemosensing and related molecular logic gating interpretations.
    Kim K; Ha Y; Kaufman L; Churchill DG
    Inorg Chem; 2012 Jan; 51(2):928-38. PubMed ID: 22201447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient complexation of pyrrole-bridged dizinc(II) bisporphyrin with fluorescent probe pyrene: synthesis, structure, and photoinduced singlet-singlet energy transfer.
    Chaudhary A; Rath SP
    Chemistry; 2011 Oct; 17(41):11478-87. PubMed ID: 21953926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions.
    Zhou H; Ma X; Wang J; Zhang L
    Org Biomol Chem; 2009 Jun; 7(11):2297-302. PubMed ID: 19462038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex.
    Khatua S; Choi SH; Lee J; Kim K; Do Y; Churchill DG
    Inorg Chem; 2009 Apr; 48(7):2993-9. PubMed ID: 19265392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization-dependent fluorescence of oligodeoxynucleotides incorporating new pyrene-modified adenosine residues.
    Seio K; Mizuta M; Tasaki K; Tamaki K; Ohkubo A; Sekine M
    Bioorg Med Chem; 2008 Sep; 16(17):8287-93. PubMed ID: 18707890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence sensing of ADP over ATP and PPi in 100% aqueous solution.
    Huang F; Hao G; Wu F; Feng G
    Analyst; 2015 Sep; 140(17):5873-6. PubMed ID: 26213259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent sensor for imidazole derivatives based on monomer-dimer equilibrium of a zinc porphyrin complex in a polymeric film.
    Zhang Y; Yang R; Liu F; Li K
    Anal Chem; 2004 Dec; 76(24):7336-45. PubMed ID: 15595877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues.
    Huang SG; Weisshart K; Fanning E
    Biochemistry; 1998 Nov; 37(44):15336-44. PubMed ID: 9799494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.