These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 21506550)
1. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Yuk SH; Oh KS; Cho SH; Lee BS; Kim SY; Kwak BK; Kim K; Kwon IC Biomacromolecules; 2011 Jun; 12(6):2335-43. PubMed ID: 21506550 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the targeting capabilities of the Paclitaxel-loaded pluronic nanoparticles with a glycol chitosan/heparin composite. Yuk SH; Oh KS; Cho SH; Kim SY; Oh S; Lee JH; Kim K; Kwon IC Mol Pharm; 2012 Feb; 9(2):230-6. PubMed ID: 22149139 [TBL] [Abstract][Full Text] [Related]
3. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Li J; He Y; Sun W; Luo Y; Cai H; Pan Y; Shen M; Xia J; Shi X Biomaterials; 2014 Apr; 35(11):3666-77. PubMed ID: 24462358 [TBL] [Abstract][Full Text] [Related]
4. [Pharmacokinetics, tissue distribution and magnetic resonance's response characterstics of folic acid-O-carboxymethyl chitosan ultrasmall superparamagnetic iron oxide nanoparticles in mice and rats]. Gao WH; Liu ST; Fan CX; Qi LY; Chen ZL Yao Xue Xue Bao; 2011 Jul; 46(7):845-51. PubMed ID: 22010356 [TBL] [Abstract][Full Text] [Related]
5. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging. Key J; Dhawan D; Cooper CL; Knapp DW; Kim K; Kwon IC; Choi K; Park K; Decuzzi P; Leary JF Int J Nanomedicine; 2016; 11():4141-55. PubMed ID: 27621615 [TBL] [Abstract][Full Text] [Related]
6. Doxorubicin-Conjugated Heparin-Coated Superparamagnetic Iron Oxide Nanoparticles for Combined Anticancer Drug Delivery and Magnetic Resonance Imaging. Yang Y; Guo Q; Peng J; Su J; Lu X; Zhao Y; Qian Z J Biomed Nanotechnol; 2016 Nov; 12(11):1963-74. PubMed ID: 29363935 [TBL] [Abstract][Full Text] [Related]
7. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Li J; Zheng L; Cai H; Sun W; Shen M; Zhang G; Shi X Biomaterials; 2013 Nov; 34(33):8382-92. PubMed ID: 23932250 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer. Dobiasch S; Szanyi S; Kjaev A; Werner J; Strauss A; Weis C; Grenacher L; Kapilov-Buchman K; Israel LL; Lellouche JP; Locatelli E; Franchini MC; Vandooren J; Opdenakker G; Felix K J Nanobiotechnology; 2016 Dec; 14(1):81. PubMed ID: 27993133 [TBL] [Abstract][Full Text] [Related]
9. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. Kim BH; Lee N; Kim H; An K; Park YI; Choi Y; Shin K; Lee Y; Kwon SG; Na HB; Park JG; Ahn TY; Kim YW; Moon WK; Choi SH; Hyeon T J Am Chem Soc; 2011 Aug; 133(32):12624-31. PubMed ID: 21744804 [TBL] [Abstract][Full Text] [Related]
10. Chitosan-triphosphate nanoparticles for encapsulation of super-paramagnetic iron oxide as an MRI contrast agent. Sanjai C; Kothan S; Gonil P; Saesoo S; Sajomsang W Carbohydr Polym; 2014 Apr; 104():231-7. PubMed ID: 24607182 [TBL] [Abstract][Full Text] [Related]
12. Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo. Lee CM; Jang D; Kim J; Cheong SJ; Kim EM; Jeong MH; Kim SH; Kim DW; Lim ST; Sohn MH; Jeong YY; Jeong HJ Bioconjug Chem; 2011 Feb; 22(2):186-92. PubMed ID: 21243999 [TBL] [Abstract][Full Text] [Related]
13. Simple PEG conjugation of SPIO via an Au-S bond improves its tumor targeting potency as a novel MR tumor imaging agent. Kojima H; Mukai Y; Yoshikawa M; Kamei K; Yoshikawa T; Morita M; Inubushi T; Yamamoto TA; Yoshioka Y; Okada N; Seino S; Nakagawa S Bioconjug Chem; 2010 Jun; 21(6):1026-31. PubMed ID: 20446679 [TBL] [Abstract][Full Text] [Related]
14. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Cheng Z; Dai Y; Kang X; Li C; Huang S; Lian H; Hou Z; Ma P; Lin J Biomaterials; 2014 Aug; 35(24):6359-68. PubMed ID: 24816364 [TBL] [Abstract][Full Text] [Related]
15. The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy. Oh KS; Lee H; Kim JY; Koo EJ; Lee EH; Park JH; Kim SY; Kim K; Kwon IC; Yuk SH J Control Release; 2013 Jan; 165(1):9-15. PubMed ID: 23103984 [TBL] [Abstract][Full Text] [Related]
16. Facile Synthesis of Folic Acid-Modified Iron Oxide Nanoparticles for Targeted MR Imaging in Pulmonary Tumor Xenografts. Zhang Z; Hu Y; Yang J; Xu Y; Zhang C; Wang Z; Shi X; Zhang G Mol Imaging Biol; 2016 Aug; 18(4):569-78. PubMed ID: 26620721 [TBL] [Abstract][Full Text] [Related]
17. Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging. Sanjai C; Kothan S; Gonil P; Saesoo S; Sajomsang W Int J Biol Macromol; 2016 May; 86():233-41. PubMed ID: 26783640 [TBL] [Abstract][Full Text] [Related]
18. Targeted in vivo photodynamic therapy with epidermal growth factor receptor-specific peptide linked nanoparticles. Narsireddy A; Vijayashree K; Irudayaraj J; Manorama SV; Rao NM Int J Pharm; 2014 Aug; 471(1-2):421-9. PubMed ID: 24939618 [TBL] [Abstract][Full Text] [Related]
19. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Fan C; Gao W; Chen Z; Fan H; Li M; Deng F; Chen Z Int J Pharm; 2011 Feb; 404(1-2):180-90. PubMed ID: 21087660 [TBL] [Abstract][Full Text] [Related]