BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21506615)

  • 1. Extracting sets of chemical substructures and protein domains governing drug-target interactions.
    Yamanishi Y; Pauwels E; Saigo H; Stoven V
    J Chem Inf Model; 2011 May; 51(5):1183-94. PubMed ID: 21506615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemogenomic approach to drug discovery: focus on cardiovascular diseases.
    Cases M; Mestres J
    Drug Discov Today; 2009 May; 14(9-10):479-85. PubMed ID: 19429507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are target-family-privileged substructures truly privileged?
    Schnur DM; Hermsmeier MA; Tebben AJ
    J Med Chem; 2006 Mar; 49(6):2000-9. PubMed ID: 16539387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.
    Xiao X; Min JL; Lin WZ; Liu Z; Cheng X; Chou KC
    J Biomol Struct Dyn; 2015; 33(10):2221-33. PubMed ID: 25513722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR
    Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing common substructures of ligands for GPCR protein subfamilies.
    Erguner B; Hattori M; Goto S; Kanehisa M
    Genome Inform; 2010; 24():31-41. PubMed ID: 22081587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The topology of drug-target interaction networks: implicit dependence on drug properties and target families.
    Mestres J; Gregori-Puigjané E; Valverde S; Solé RV
    Mol Biosyst; 2009 Sep; 5(9):1051-7. PubMed ID: 19668871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of drug target groups based on chemical-chemical similarities and chemical-chemical/protein connections.
    Chen L; Lu J; Luo X; Feng KY
    Biochim Biophys Acta; 2014 Jan; 1844(1 Pt B):207-13. PubMed ID: 23732562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures.
    Wang C; Liu J; Luo F; Deng Z; Hu QN
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S2. PubMed ID: 25707321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rough set-based proteochemometrics modeling of G-protein-coupled receptor-ligand interactions.
    Strömbergsson H; Prusis P; Midelfart H; Lapinsh M; Wikberg JE; Komorowski J
    Proteins; 2006 Apr; 63(1):24-34. PubMed ID: 16435365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved core substructures in the overlay of protein-ligand complexes.
    Finzel BC; Akavaram R; Ragipindi A; Van Voorst JR; Cahn M; Davis ME; Pokross ME; Sheriff S; Baldwin ET
    J Chem Inf Model; 2011 Aug; 51(8):1931-41. PubMed ID: 21736376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical genomics approach for GPCR-ligand interaction prediction and extraction of ligand binding determinants.
    Shiraishi A; Niijima S; Brown JB; Nakatsui M; Okuno Y
    J Chem Inf Model; 2013 Jun; 53(6):1253-62. PubMed ID: 23721295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse Modeling to Analyze Drug-Target Interaction Networks.
    Yamanishi Y
    Methods Mol Biol; 2018; 1807():181-193. PubMed ID: 30030811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting drug-target interactions using probabilistic matrix factorization.
    Cobanoglu MC; Liu C; Hu F; Oltvai ZN; Bahar I
    J Chem Inf Model; 2013 Dec; 53(12):3399-409. PubMed ID: 24289468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-ligand interaction prediction: an improved chemogenomics approach.
    Jacob L; Vert JP
    Bioinformatics; 2008 Oct; 24(19):2149-56. PubMed ID: 18676415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global optimization-based inference of chemogenomic features from drug-target interactions.
    Zu S; Chen T; Li S
    Bioinformatics; 2015 Aug; 31(15):2523-9. PubMed ID: 25819672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target interaction prediction by random walk on the heterogeneous network.
    Chen X; Liu MX; Yan GY
    Mol Biosyst; 2012 Jul; 8(7):1970-8. PubMed ID: 22538619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.