BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21507418)

  • 1. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes.
    Chen R; Zhi C; Yang H; Bando Y; Zhang Z; Sugiur N; Golberg D
    J Colloid Interface Sci; 2011 Jul; 359(1):261-8. PubMed ID: 21507418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions.
    Beduk F
    Environ Technol; 2016; 37(14):1790-801. PubMed ID: 26831455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SnO2 nanoparticle-functionalized boron nitride nanotubes.
    Zhi C; Bando Y; Tang C; Golberg D
    J Phys Chem B; 2006 May; 110(17):8548-50. PubMed ID: 16640404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature.
    Shipley HJ; Yean S; Kan AT; Tomson MB
    Environ Toxicol Chem; 2009 Mar; 28(3):509-15. PubMed ID: 18939890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water.
    Jiang W; Chen X; Niu Y; Pan B
    J Hazard Mater; 2012 Dec; 243():319-25. PubMed ID: 23131498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length fractionation of boron nitride nanotubes using creamed oil-in-water emulsions.
    Lau YT; Yamaguchi M; Li X; Bando Y; Golberg D; Winnik FM
    Langmuir; 2014 Feb; 30(7):1735-40. PubMed ID: 24512303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution.
    Kakavandi B; Esrafili A; Mohseni-Bandpi A; Jonidi Jafari A; Rezaei Kalantary R
    Water Sci Technol; 2014; 69(1):147-55. PubMed ID: 24434981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of yeast cross-linked Fe
    Rajesh Kumar S; Jayavignesh V; Selvakumar R; Swaminathan K; Ponpandian N
    J Colloid Interface Sci; 2016 Dec; 484():183-195. PubMed ID: 27610473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions.
    Chang YC; Chen DH
    J Colloid Interface Sci; 2005 Mar; 283(2):446-51. PubMed ID: 15721917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere.
    Bujňáková Z; Baláž P; Zorkovská A; Sayagués MJ; Kováč J; Timko M
    J Hazard Mater; 2013 Nov; 262():1204-12. PubMed ID: 23531452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic.
    Chun J; Lee H; Lee SH; Hong SW; Lee J; Lee C; Lee J
    Chemosphere; 2012 Nov; 89(10):1230-7. PubMed ID: 22884493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands.
    Hsu JC; Lin CJ; Liao CH; Chen ST
    J Hazard Mater; 2008 May; 153(1-2):817-26. PubMed ID: 17988793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities.
    Mou F; Guan J; Ma H; Xu L; Shi W
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3987-93. PubMed ID: 22796758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clean application of magnetic biomaterial for the removal of As (III) from water.
    Pholosi A; Naidoo BE; Ofomaja AE
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30348-30365. PubMed ID: 30159840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron nitride nanotubes and their functionalization via quinuclidine-3-thiol with gold nanoparticles for the development and enhancement of the HPLC performance of HPLC monolithic columns.
    André C; Guillaume YC
    Talanta; 2012 May; 93():274-8. PubMed ID: 22483910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres.
    Iram M; Guo C; Guan Y; Ishfaq A; Liu H
    J Hazard Mater; 2010 Sep; 181(1-3):1039-50. PubMed ID: 20566240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal.
    Feng L; Cao M; Ma X; Zhu Y; Hu C
    J Hazard Mater; 2012 May; 217-218():439-46. PubMed ID: 22494901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled fabrication of polyethylenimine-functionalized magnetic nanoparticles for the sequestration and quantification of free Cu2+.
    Goon IY; Zhang C; Lim M; Gooding JJ; Amal R
    Langmuir; 2010 Jul; 26(14):12247-52. PubMed ID: 20527930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor.
    Wu J; Yin L
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4354-62. PubMed ID: 22013877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.