These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 21507481)
1. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid). Jansen J; Koopmans SA; Los LI; van der Worp RJ; Podt JG; Hooymans JM; Feijen J; Grijpma DW Biomaterials; 2011 Aug; 32(22):4994-5002. PubMed ID: 21507481 [TBL] [Abstract][Full Text] [Related]
2. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks. Rongen JJ; van Bochove B; Hannink G; Grijpma DW; Buma P J Biomed Mater Res A; 2016 Nov; 104(11):2823-32. PubMed ID: 27392321 [TBL] [Abstract][Full Text] [Related]
3. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Zhang Z; Kuijer R; Bulstra SK; Grijpma DW; Feijen J Biomaterials; 2006 Mar; 27(9):1741-8. PubMed ID: 16221493 [TBL] [Abstract][Full Text] [Related]
4. [Biocompatibility evaluation of lactide--trimethylene carbonate copolymers]. Tu S; Yang J; Chen Y; Luo X; Li S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):595-9. PubMed ID: 20649027 [TBL] [Abstract][Full Text] [Related]
5. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide). Guo Q; Lu Z; Zhang Y; Li S; Yang J Acta Biochim Biophys Sin (Shanghai); 2011 Jun; 43(6):433-40. PubMed ID: 21571741 [TBL] [Abstract][Full Text] [Related]
6. In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co)polymer networks: degradation and tissue response. Bat E; Plantinga JA; Harmsen MC; van Luyn MJ; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Dec; 95(3):940-9. PubMed ID: 20845496 [TBL] [Abstract][Full Text] [Related]
7. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response. Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255 [TBL] [Abstract][Full Text] [Related]
8. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films. Bat E; van Kooten TG; Feijen J; Grijpma DW Biomaterials; 2009 Aug; 30(22):3652-61. PubMed ID: 19356797 [TBL] [Abstract][Full Text] [Related]
9. The effect of poly(trimethylene carbonate) molecular weight on macrophage behavior and enzyme adsorption and conformation. Vyner MC; Li A; Amsden BG Biomaterials; 2014 Nov; 35(33):9041-8. PubMed ID: 25109440 [TBL] [Abstract][Full Text] [Related]
10. [Experimental research on degradation and biocompatibility of super-high-molecular-weight poly-DL-lactic acid]. Liu L; Zheng Q; Wei S; Zhao Z; Xiong C; Luo F; Deng X Hua Xi Kou Qiang Yi Xue Za Zhi; 2002 Jun; 20(3):216-8. PubMed ID: 12600071 [TBL] [Abstract][Full Text] [Related]
12. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility. Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041 [TBL] [Abstract][Full Text] [Related]
13. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation. Hooper KA; Macon ND; Kohn J J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614 [TBL] [Abstract][Full Text] [Related]
14. Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation. Timbart L; Tse MY; Pang SC; Babasola O; Amsden BG Macromol Biosci; 2009 Aug; 9(8):786-94. PubMed ID: 19253418 [TBL] [Abstract][Full Text] [Related]
15. Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface. Moon HK; Choi YS; Lee JK; Ha CS; Lee WK; Gardella JA Langmuir; 2009 Apr; 25(8):4478-83. PubMed ID: 19245220 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Gong Y; Zhou Q; Gao C; Shen J Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355 [TBL] [Abstract][Full Text] [Related]
17. Resorbable elastomeric networks prepared by photocrosslinking of high-molecular-weight poly(trimethylene carbonate) with photoinitiators and poly(trimethylene carbonate) macromers as crosslinking aids. Bat E; van Kooten TG; Feijen J; Grijpma DW Acta Biomater; 2011 May; 7(5):1939-48. PubMed ID: 21232640 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation. Jensen T; Jakobsen T; Baas J; Nygaard JV; Dolatshahi-Pirouz A; Hovgaard MB; Foss M; Bünger C; Besenbacher F; Søballe K J Biomed Mater Res A; 2010 Dec; 95(3):665-72. PubMed ID: 20725972 [TBL] [Abstract][Full Text] [Related]
19. New biodegradable networks of poly(N-vinylpyrrolidinone) designed for controlled nonburst degradation in the vitreous body. Bruining MJ; Edelbroek-Hoogendoorn PS; Blaauwgeers HG; Mooy CM; Hendrikse FH; Koole LH J Biomed Mater Res; 1999 Nov; 47(2):189-97. PubMed ID: 10449629 [TBL] [Abstract][Full Text] [Related]
20. Amorphous calcium phosphate/poly(D,L-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. Ma Z; Chen F; Zhu YJ; Cui T; Liu XY J Colloid Interface Sci; 2011 Jul; 359(2):371-9. PubMed ID: 21536302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]