These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21507506)

  • 1. Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants.
    Cellini A; Corpas FJ; Barroso JB; Masia A
    J Plant Physiol; 2011 Sep; 168(13):1543-9. PubMed ID: 21507506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance.
    Molassiotis A; Tanou G; Diamantidis G; Patakas A; Therios I
    J Plant Physiol; 2006 Feb; 163(2):176-85. PubMed ID: 16399008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes.
    Donnini S; Dell'Orto M; Zocchi G
    Tree Physiol; 2011 Jan; 31(1):102-13. PubMed ID: 21389006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress.
    Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y
    Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).
    Bert PF; Bordenave L; Donnart M; Hévin C; Ollat N; Decroocq S
    Theor Appl Genet; 2013 Feb; 126(2):451-73. PubMed ID: 23139142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions.
    Gonzalo MJ; Moreno MÁ; Gogorcena Y
    J Plant Physiol; 2011 Jun; 168(9):887-93. PubMed ID: 21306783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging.
    Pistelli L; Iacona C; Miano D; Cirilli M; Colao MC; Mensuali-Sodi A; Muleo R
    Tree Physiol; 2012 Mar; 32(3):355-68. PubMed ID: 22391010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate-induced iron deficiency.
    Ksouri R; Debez A; Mahmoudi H; Ouerghi Z; Gharsalli M; Lachaâl M
    Plant Physiol Biochem; 2007 May; 45(5):315-22. PubMed ID: 17468003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks.
    Zrig A; Tounekti T; Vadel AM; Ben Mohamed H; Valero D; Serrano M; Chtara C; Khemira H
    Plant Physiol Biochem; 2011 Nov; 49(11):1313-22. PubMed ID: 22000055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency.
    Ksouri R; Gharsalli M; Lachaal M
    J Plant Physiol; 2005 Mar; 162(3):335-41. PubMed ID: 15832686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum Induces Distinct Changes in the Metabolism of Reactive Oxygen and Nitrogen Species in the Roots of Two Wheat Genotypes with Different Aluminum Resistance.
    Sun C; Liu L; Zhou W; Lu L; Jin C; Lin X
    J Agric Food Chem; 2017 Nov; 65(43):9419-9427. PubMed ID: 29016127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess.
    Rose MT; Rose TJ; Pariasca-Tanaka J; Yoshihashi T; Neuweger H; Goesmann A; Frei M; Wissuwa M
    Planta; 2012 Oct; 236(4):959-73. PubMed ID: 22526504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis.
    Zha Q; Wang Y; Zhang XZ; Han ZH
    Plant Sci; 2014 Jan; 214():47-56. PubMed ID: 24268163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage.
    Amador ML; Sancho S; Bielsa B; Gomez-Aparisi J; Rubio-Cabetas MJ
    Physiol Plant; 2012 Apr; 144(4):357-68. PubMed ID: 22221115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of eleven kiwifruit genotypes for bicarbonate tolerance and characterization of two tolerance-contrasting genotypes.
    Chen Y; Bao W; Hong W; Dong X; Gong M; Cheng Q; Mao K; Yao C; Liu Z; Wang N
    Plant Physiol Biochem; 2023 Jan; 194():202-213. PubMed ID: 36427382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus.
    Signorelli S; Corpas FJ; Borsani O; Barroso JB; Monza J
    Plant Sci; 2013 Mar; 201-202():137-46. PubMed ID: 23352412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil.
    Zuo Y; Ren L; Zhang F; Jiang RF
    Plant Physiol Biochem; 2007 May; 45(5):357-64. PubMed ID: 17468004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis.
    Jiménez S; Ollat N; Deborde C; Maucourt M; Rellán-Álvarez R; Moreno MÁ; Gogorcena Y
    J Plant Physiol; 2011 Mar; 168(5):415-23. PubMed ID: 20952094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of olive varieties for tolerance to iron chlorosis.
    Alcántara E; Cordeiro AM; Barranco D
    J Plant Physiol; 2003 Dec; 160(12):1467-72. PubMed ID: 14717439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of short term iron citrate treatments at different pH values on roots of iron-deficient cucumber: a Mössbauer analysis.
    Fodor F; Kovács K; Czech V; Solti Á; Tóth B; Lévai L; Bóka K; Vértes A
    J Plant Physiol; 2012 Nov; 169(16):1615-22. PubMed ID: 22739262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.