BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21507955)

  • 1. A disease-associated polymorphism alters splicing of the human CD45 phosphatase gene by disrupting combinatorial repression by heterogeneous nuclear ribonucleoproteins (hnRNPs).
    Motta-Mena LB; Smith SA; Mallory MJ; Jackson J; Wang J; Lynch KW
    J Biol Chem; 2011 Jun; 286(22):20043-53. PubMed ID: 21507955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cell-based screen for splicing regulators identifies hnRNP LL as a distinct signal-induced repressor of CD45 variable exon 4.
    Topp JD; Jackson J; Melton AA; Lynch KW
    RNA; 2008 Oct; 14(10):2038-49. PubMed ID: 18719244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HnRNP L represses exon splicing via a regulated exonic splicing silencer.
    Rothrock CR; House AE; Lynch KW
    EMBO J; 2005 Aug; 24(15):2792-802. PubMed ID: 16001081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer.
    Lynch KW; Weiss A
    J Biol Chem; 2001 Jun; 276(26):24341-7. PubMed ID: 11306584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing.
    Preussner M; Schreiner S; Hung LH; Porstner M; Jäck HM; Benes V; Rätsch G; Bindereif A
    Nucleic Acids Res; 2012 Jul; 40(12):5666-78. PubMed ID: 22402488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of CD45 isoforms is controlled by the combined activity of basal and inducible splicing-regulatory elements in each of the variable exons.
    Tong A; Nguyen J; Lynch KW
    J Biol Chem; 2005 Nov; 280(46):38297-304. PubMed ID: 16172127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial control of signal-induced exon repression by hnRNP L and PSF.
    Melton AA; Jackson J; Wang J; Lynch KW
    Mol Cell Biol; 2007 Oct; 27(19):6972-84. PubMed ID: 17664280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation-Dependent TRAF3 Exon 8 Alternative Splicing Is Controlled by CELF2 and hnRNP C Binding to an Upstream Intronic Element.
    Schultz AS; Preussner M; Bunse M; Karni R; Heyd F
    Mol Cell Biol; 2017 Apr; 37(7):. PubMed ID: 28031331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the HIV-1 exon splicing silencer 3.
    Levengood JD; Rollins C; Mishler CH; Johnson CA; Miner G; Rajan P; Znosko BM; Tolbert BS
    J Mol Biol; 2012 Jan; 415(4):680-98. PubMed ID: 22154809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phenylalanine hydroxylase c.30C>G synonymous variation (p.G10G) creates a common exonic splicing silencer.
    Dobrowolski SF; Andersen HS; Doktor TK; Andresen BS
    Mol Genet Metab; 2010 Aug; 100(4):316-23. PubMed ID: 20457534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HnRNP L-mediated regulation of mammalian alternative splicing by interference with splice site recognition.
    Heiner M; Hui J; Schreiner S; Hung LH; Bindereif A
    RNA Biol; 2010; 7(1):56-64. PubMed ID: 19946215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA.
    Heinrich B; Zhang Z; Raitskin O; Hiller M; Benderska N; Hartmann AM; Bracco L; Elliott D; Ben-Ari S; Soreq H; Sperling J; Sperling R; Stamm S
    J Biol Chem; 2009 May; 284(21):14303-15. PubMed ID: 19282290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B.
    Expert-Bezançon A; Sureau A; Durosay P; Salesse R; Groeneveld H; Lecaer JP; Marie J
    J Biol Chem; 2004 Sep; 279(37):38249-59. PubMed ID: 15208309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1.
    Hofmann Y; Wirth B
    Hum Mol Genet; 2002 Aug; 11(17):2037-49. PubMed ID: 12165565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer.
    Horan L; Yasuhara JC; Kohlstaedt LA; Rio DC
    Genes Dev; 2015 Nov; 29(21):2298-311. PubMed ID: 26545814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-dependent regulatory mechanism of the splicing factor hnRNP L.
    Motta-Mena LB; Heyd F; Lynch KW
    Mol Cell; 2010 Jan; 37(2):223-34. PubMed ID: 20122404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL.
    Oberdoerffer S; Moita LF; Neems D; Freitas RP; Hacohen N; Rao A
    Science; 2008 Aug; 321(5889):686-91. PubMed ID: 18669861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene.
    Chen CD; Kobayashi R; Helfman DM
    Genes Dev; 1999 Mar; 13(5):593-606. PubMed ID: 10072387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing.
    Kashima T; Rao N; David CJ; Manley JL
    Hum Mol Genet; 2007 Dec; 16(24):3149-59. PubMed ID: 17884807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.
    Cao W; Razanau A; Feng D; Lobo VG; Xie J
    Nucleic Acids Res; 2012 Sep; 40(16):8059-71. PubMed ID: 22684629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.