These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21508031)

  • 1. Warming will affect phytoplankton differently: evidence through a mechanistic approach.
    Huertas IE; Rouco M; López-Rodas V; Costas E
    Proc Biol Sci; 2011 Dec; 278(1724):3534-43. PubMed ID: 21508031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global pattern of thermal adaptation in marine phytoplankton.
    Thomas MK; Kremer CT; Klausmeier CA; Litchman E
    Science; 2012 Nov; 338(6110):1085-8. PubMed ID: 23112294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoplankton adapt to changing ocean environments.
    Irwin AJ; Finkel ZV; Müller-Karger FE; Troccoli Ghinaglia L
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5762-6. PubMed ID: 25902497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal niche evolution of functional traits in a tropical marine phototroph.
    Baker KG; Radford DT; Evenhuis C; Kuzhiumparam U; Ralph PJ; Doblin MA
    J Phycol; 2018 Dec; 54(6):799-810. PubMed ID: 29901841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.
    Domis LN; Van de Waal DB; Helmsing NR; Van Donk E; Mooij WM
    Ecology; 2014 Jun; 95(6):1485-95. PubMed ID: 25039214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heatwave responses of Arctic phytoplankton communities are driven by combined impacts of warming and cooling.
    Wolf KKE; Hoppe CJM; Rehder L; Schaum E; John U; Rost B
    Sci Adv; 2024 May; 10(20):eadl5904. PubMed ID: 38758795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton.
    Yvon-Durocher G; Allen AP; Cellamare M; Dossena M; Gaston KJ; Leitao M; Montoya JM; Reuman DC; Woodward G; Trimmer M
    PLoS Biol; 2015 Dec; 13(12):e1002324. PubMed ID: 26680314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution meets marine phytoplankton.
    Reusch TB; Boyd PW
    Evolution; 2013 Jul; 67(7):1849-59. PubMed ID: 23815643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast adaptation of tropical diatoms to increased warming with trade-offs.
    Jin P; Agustí S
    Sci Rep; 2018 Dec; 8(1):17771. PubMed ID: 30538260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dust storms increase the tolerance of phytoplankton to thermal and pH changes.
    González-Olalla JM; Powell JA; Brahney J
    Glob Chang Biol; 2024 Jan; 30(1):e17055. PubMed ID: 38273543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming.
    Barton S; Padfield D; Masterson A; Buckling A; Smirnoff N; Yvon-Durocher G
    Glob Chang Biol; 2023 Sep; 29(18):5261-5275. PubMed ID: 37395481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the capability of different phytoplankton groups to adapt to contamination: herbicides will affect phytoplankton species differently.
    Huertas IE; Rouco M; López-Rodas V; Costas E
    New Phytol; 2010 Oct; 188(2):478-87. PubMed ID: 20630023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplified Arctic warming by phytoplankton under greenhouse warming.
    Park JY; Kug JS; Bader J; Rolph R; Kwon M
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5921-6. PubMed ID: 25902494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Title: Freshwater phytoplankton responses to global warming.
    Wagner H; Fanesi A; Wilhelm C
    J Plant Physiol; 2016 Sep; 203():127-134. PubMed ID: 27344409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming.
    Bishop IW; Anderson SI; Collins S; Rynearson TA
    Glob Chang Biol; 2022 Oct; 28(19):5755-5767. PubMed ID: 35785458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach.
    Wagner A; Benndorf J
    Oecologia; 2007 Mar; 151(2):351-64. PubMed ID: 17120058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Warming of aquatic ecosystems disrupts aquatic-terrestrial linkages in the tropics.
    Nash LN; Antiqueira PAP; Romero GQ; de Omena PM; Kratina P
    J Anim Ecol; 2021 Jul; 90(7):1623-1634. PubMed ID: 33955003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments.
    Chen Z; Farrell AP; Matala A; Narum SR
    Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoplankton biodiversity is more important for ecosystem functioning in highly variable thermal environments.
    Bestion E; Haegeman B; Alvarez Codesal S; Garreau A; Huet M; Barton S; Montoya JM
    Proc Natl Acad Sci U S A; 2021 Aug; 118(35):. PubMed ID: 34446547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.