These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 21508225)
1. Opposing roles of nucleus accumbens core and shell dopamine in the modulation of limbic information processing. Ito R; Hayen A J Neurosci; 2011 Apr; 31(16):6001-7. PubMed ID: 21508225 [TBL] [Abstract][Full Text] [Related]
2. Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats. Tan SE Brain Res Bull; 2008 Dec; 77(6):412-9. PubMed ID: 18929625 [TBL] [Abstract][Full Text] [Related]
3. Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions. LaLumiere RT; Nawar EM; McGaugh JL Learn Mem; 2005; 12(3):296-301. PubMed ID: 15930508 [TBL] [Abstract][Full Text] [Related]
4. Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference. Hayen A; Meese-Tamuri S; Gates A; Ito R Psychopharmacology (Berl); 2014 Jun; 231(12):2483-92. PubMed ID: 24429871 [TBL] [Abstract][Full Text] [Related]
5. Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning. Ito R; Canseliet M Neuropsychopharmacology; 2010 Jun; 35(7):1440-52. PubMed ID: 20200510 [TBL] [Abstract][Full Text] [Related]
6. Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. Ito R; Robbins TW; Pennartz CM; Everitt BJ J Neurosci; 2008 Jul; 28(27):6950-9. PubMed ID: 18596169 [TBL] [Abstract][Full Text] [Related]
7. The role of the nucleus accumbens shell in the mediation of the reinforcing properties of a safety signal in free-operant avoidance: dopamine-dependent inhibitory effects of d-amphetamine. Fernando AB; Urcelay GP; Mar AC; Dickinson TA; Robbins TW Neuropsychopharmacology; 2014 May; 39(6):1420-30. PubMed ID: 24336447 [TBL] [Abstract][Full Text] [Related]
8. Administration of neuropeptide Y into the rat nucleus accumbens shell, but not core, attenuates the motivational impairment from systemic dopamine receptor antagonism by α-flupenthixol. Carney AE; Clarke C; Pratt WE Neurosci Lett; 2023 Feb; 797():137069. PubMed ID: 36641044 [TBL] [Abstract][Full Text] [Related]
9. Microinjections of flupenthixol into the caudate-putamen but not the nucleus accumbens, amygdala or frontal cortex of rats produce intra-session declines in food-rewarded operant responding. Beninger RJ; Ranaldi R Behav Brain Res; 1993 Jun; 55(2):203-12. PubMed ID: 8395180 [TBL] [Abstract][Full Text] [Related]
10. Bi-directional cannabinoid signalling in the basolateral amygdala controls rewarding and aversive emotional processing via functional regulation of the nucleus accumbens. Ahmad T; Sun N; Lyons D; Laviolette SR Addict Biol; 2017 Sep; 22(5):1218-1231. PubMed ID: 27230434 [TBL] [Abstract][Full Text] [Related]
11. Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Heidbreder C; Feldon J Synapse; 1998 Aug; 29(4):310-22. PubMed ID: 9661249 [TBL] [Abstract][Full Text] [Related]
12. Opposing roles for the nucleus accumbens core and shell in cue-induced reinstatement of food-seeking behavior. Floresco SB; McLaughlin RJ; Haluk DM Neuroscience; 2008 Jun; 154(3):877-84. PubMed ID: 18479836 [TBL] [Abstract][Full Text] [Related]
13. Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Peleg-Raibstein D; Feldon J Neuropharmacology; 2006 Oct; 51(5):947-57. PubMed ID: 16876207 [TBL] [Abstract][Full Text] [Related]
14. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens. Sun N; Laviolette SR; Neuropsychopharmacology; 2014 Nov; 39(12):2799-815. PubMed ID: 24896614 [TBL] [Abstract][Full Text] [Related]
15. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. Di Ciano P; Cardinal RN; Cowell RA; Little SJ; Everitt BJ J Neurosci; 2001 Dec; 21(23):9471-7. PubMed ID: 11717381 [TBL] [Abstract][Full Text] [Related]
16. Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforcer Devaluation. West EA; Carelli RM J Neurosci; 2016 Jan; 36(4):1128-39. PubMed ID: 26818502 [TBL] [Abstract][Full Text] [Related]
17. Intra-accumbens protein kinase C inhibitor NPC 15437 blocks amphetamine-produced conditioned place preference in rats. Aujla H; Beninger RJ Behav Brain Res; 2003 Dec; 147(1-2):41-8. PubMed ID: 14659568 [TBL] [Abstract][Full Text] [Related]
18. Characterization of dopamine-dependent rewarding and locomotor stimulant effects of intravenously-administered methylphenidate in rats. Sellings LH; McQuade LE; Clarke PB Neuroscience; 2006 Sep; 141(3):1457-68. PubMed ID: 16753267 [TBL] [Abstract][Full Text] [Related]
19. Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. Sellings LH; Clarke PB J Neurosci; 2003 Jul; 23(15):6295-303. PubMed ID: 12867514 [TBL] [Abstract][Full Text] [Related]
20. Dopamine in nucleus accumbens: salience modulation in latent inhibition and overshadowing. Nelson AJ; Thur KE; Marsden CA; Cassaday HJ J Psychopharmacol; 2011 Dec; 25(12):1649-60. PubMed ID: 21262855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]