BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 21508229)

  • 21. Target-wide Induction and Synapse Type-Specific Robustness of Presynaptic Homeostasis.
    Genç Ö; Davis GW
    Curr Biol; 2019 Nov; 29(22):3863-3873.e2. PubMed ID: 31708391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure.
    Carter AR; Chen C; Schwartz PM; Segal RA
    J Neurosci; 2002 Feb; 22(4):1316-27. PubMed ID: 11850459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats.
    Sun HY; Lyons SA; Dobrunz LE
    J Physiol; 2005 Nov; 568(Pt 3):815-40. PubMed ID: 16109728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different states of synaptic vesicle priming explain target cell type-dependent differences in neurotransmitter release.
    Aldahabi M; Neher E; Nusser Z
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2322550121. PubMed ID: 38657053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity.
    Trommershäuser J; Schneggenburger R; Zippelius A; Neher E
    Biophys J; 2003 Mar; 84(3):1563-79. PubMed ID: 12609861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferential localization of glutamate receptors opposite sites of high presynaptic release.
    Marrus SB; DiAntonio A
    Curr Biol; 2004 Jun; 14(11):924-31. PubMed ID: 15182665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The number of components of enhancement contributing to short-term synaptic plasticity at the neuromuscular synapse during patterned nerve Stimulation progressively decreases as basal release probability is increased from low to normal levels by changing extracellular Ca2+.
    Holohean AM; Magleby KL
    J Neurosci; 2011 May; 31(19):7060-72. PubMed ID: 21562268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre-Purkinje cell synapses.
    Silver RA; Momiyama A; Cull-Candy SG
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):881-902. PubMed ID: 9660900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength.
    Taschenberger H; Woehler A; Neher E
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4548-57. PubMed ID: 27432975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy.
    Tao CL; Liu YT; Sun R; Zhang B; Qi L; Shivakoti S; Tian CL; Zhang P; Lau PM; Zhou ZH; Bi GQ
    J Neurosci; 2018 Feb; 38(6):1493-1510. PubMed ID: 29311144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A model synapse that incorporates the properties of short- and long-term synaptic plasticity.
    Sargsyan AR; Melkonyan AA; Papatheodoropoulos C; Mkrtchian HH; Kostopoulos GK
    Neural Netw; 2003 Oct; 16(8):1161-77. PubMed ID: 13678620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid homeostatic modulation of transsynaptic nanocolumn rings.
    Muttathukunnel P; Frei P; Perry S; Dickman D; Müller M
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2119044119. PubMed ID: 36322725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission.
    Stawarski M; Hernandez RX; Feghhi T; Borycz JA; Lu Z; Agarwal AB; Reihl KD; Tavora R; Lau AWC; Meinertzhagen IA; Renden R; Macleod GT
    J Neurosci; 2020 Feb; 40(8):1611-1624. PubMed ID: 31964719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RIM1alpha and RIM1beta are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions.
    Kaeser PS; Kwon HB; Chiu CQ; Deng L; Castillo PE; Südhof TC
    J Neurosci; 2008 Dec; 28(50):13435-47. PubMed ID: 19074017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs.
    Thomas U; Sigrist SJ
    Adv Exp Med Biol; 2012; 970():3-28. PubMed ID: 22351049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Release probability modulates short-term plasticity at a rat giant terminal.
    Oleskevich S; Clements J; Walmsley B
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):513-23. PubMed ID: 10766930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Maintenance of Synaptic Homeostasis at the
    Yeates CJ; Zwiefelhofer DJ; Frank CA
    eNeuro; 2017; 4(6):. PubMed ID: 29255795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression.
    Sullivan JM
    J Neurophysiol; 2007 Jan; 97(1):948-50. PubMed ID: 17079345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation.
    Han EB; Stevens CF
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10817-22. PubMed ID: 19509338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles.
    Kawano H; Katsurabayashi S; Kakazu Y; Yamashita Y; Kubo N; Kubo M; Okuda H; Takasaki K; Kubota K; Mishima K; Fujiwara M; Harata NC; Iwasaki K
    PLoS One; 2012; 7(10):e48034. PubMed ID: 23110166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.