BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 21508449)

  • 1. Hydrothermally grown ZnO nanostructures on few-layer graphene sheets.
    Kim YJ; Hadiyawarman ; Yoon A; Kim M; Yi GC; Liu C
    Nanotechnology; 2011 Jun; 22(24):245603. PubMed ID: 21508449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers.
    Lin J; Penchev M; Wang G; Paul RK; Zhong J; Jing X; Ozkan M; Ozkan CS
    Small; 2010 Nov; 6(21):2448-52. PubMed ID: 20878792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled growth of inorganic nanorod arrays using graphene nanodot seed layers.
    Kim YJ; Kim SS; Park JB; Sohn BH; Yi GC
    Nanotechnology; 2014 Apr; 25(13):135609. PubMed ID: 24598198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass.
    Lee HK; Kim MS; Yu JS
    Nanotechnology; 2011 Nov; 22(44):445602. PubMed ID: 21979460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates.
    Ku CH; Wu JJ
    J Phys Chem B; 2006 Jul; 110(26):12981-5. PubMed ID: 16805603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties.
    Cheng C; Liu B; Yang H; Zhou W; Sun L; Chen R; Yu SF; Zhang J; Gong H; Sun H; Fan HJ
    ACS Nano; 2009 Oct; 3(10):3069-76. PubMed ID: 19772329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process.
    Pal U; Santiago P
    J Phys Chem B; 2005 Aug; 109(32):15317-21. PubMed ID: 16852941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale observation of rotational misorientation in suspended few-layer graphene sheets.
    Singh MK; Titus E; Gonçalves G; Marques PA; Bdikin I; Kholkin AL; Gracio JJ
    Nanoscale; 2010 May; 2(5):700-8. PubMed ID: 20648314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation.
    Umar A; Karunagaran B; Suh EK; Hahn YB
    Nanotechnology; 2006 Aug; 17(16):4072-7. PubMed ID: 21727540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and optical properties of ZnO low-dimensional nanostructures.
    Liu Y; Tong Y
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1101-9. PubMed ID: 18468110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The optical properties of vertically aligned ZnO nanowires deposited using a dimethylzinc adduct.
    Black K; Jones AC; Alexandrou I; Heys PN; Chalker PR
    Nanotechnology; 2010 Jan; 21(4):045701. PubMed ID: 20009167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.
    Umar A; Karunagaran B; Kim SH; Suh EK; Hahn YB
    Inorg Chem; 2008 May; 47(10):4088-94. PubMed ID: 18396866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical reflectivity and Raman scattering in few-layer-thick graphene highly doped by K and Rb.
    Jung N; Kim B; Crowther AC; Kim N; Nuckolls C; Brus L
    ACS Nano; 2011 Jul; 5(7):5708-16. PubMed ID: 21682332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cathodoluminescence of ZnO nanostructure arrays hydrothermally grown on the patterned seed layers using a polystyrene-sphere-based lithographic method.
    Le Shim E; Kim JM; Okhlopkova AA; Kang CJ; Choi YJ; Cho JH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8074-8. PubMed ID: 24266194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence.
    Zhang H; Yang D; Ma X; Du N; Wu J; Que D
    J Phys Chem B; 2006 Jan; 110(2):827-30. PubMed ID: 16471610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical, field-emission, and antimicrobial properties of ZnO nanostructured films deposited at room temperature by activated reactive evaporation.
    Yuvaraj D; Kaushik R; Narasimha Rao K
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1019-24. PubMed ID: 20423121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices.
    Chung K; Lee CH; Yi GC
    Science; 2010 Oct; 330(6004):655-7. PubMed ID: 21030653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse.
    Biroju RK; Tilak N; Rajender G; Dhara S; Giri PK
    Nanotechnology; 2015 Apr; 26(14):145601. PubMed ID: 25772263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.