BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21508457)

  • 1. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.
    Kurra N; Prakash G; Basavaraja S; Fisher TS; Kulkarni GU; Reifenberger RG
    Nanotechnology; 2011 Jun; 22(24):245302. PubMed ID: 21508457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite.
    Paredes JI; Martínez-Alonso A; Tascón JM
    Langmuir; 2007 Aug; 23(17):8932-43. PubMed ID: 17628085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction and dynamics of ambient water adlayers on graphite probed using AFM voltage nanolithography and electrostatic force microscopy.
    Gowthami T; Kurra N; Raina G
    Nanotechnology; 2014 Apr; 25(15):155304. PubMed ID: 24651210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Single-Atomic-Layer Lithography on Highly Oriented Pyrolytic Graphite Surfaces Using AFM-Based Electrochemical Etching.
    Han W; Mathew PT; Kolagatla S; Rodriguez BJ; Fang F
    Nanomanuf Metrol; 2022; 5(1):32-38. PubMed ID: 35402782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of synthetic homo- and hetero-oligodeoxynucleotides onto highly oriented pyrolytic graphite: atomic force microscopy characterization.
    Chiorcea Paquim AM; Oretskaya TS; Oliveira Brett AM
    Biophys Chem; 2006 May; 121(2):131-41. PubMed ID: 16460874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite.
    Yang Y; Lin J
    Microsc Microanal; 2016 Apr; 22(2):432-9. PubMed ID: 26847869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual DNA structures formed on bare highly oriented pyrolytic graphite surfaces studied by atomic force microscopy.
    Liu Z; Zhao L; Zu Y; Tan S; Wang Y; Zhang Y
    Microsc Microanal; 2013 Jun; 19(3):544-52. PubMed ID: 23534938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale multiple gaseous layers on a hydrophobic surface.
    Zhang L; Zhang X; Fan C; Zhang Y; Hu J
    Langmuir; 2009 Aug; 25(16):8860-4. PubMed ID: 19601567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA imaged on a HOPG electrode surface by AFM with controlled potential.
    Oliveira Brett AM; Chiorcea Paquim AM
    Bioelectrochemistry; 2005 Apr; 66(1-2):117-24. PubMed ID: 15833711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography.
    Vasić B; Kratzer M; Matković A; Nevosad A; Ralević U; Jovanović D; Ganser C; Teichert C; Gajić R
    Nanotechnology; 2013 Jan; 24(1):015303. PubMed ID: 23220750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct nanofabrication of copper on silicon substrate by electrochemical atomic force microscope lithography.
    Kwon G; Lee H
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7076-9. PubMed ID: 19908731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of HOPG by STM and contact AFM in various gas atmospheres under pressures up to 1.1 MPa.
    Suzuki Y; Enoki H; Akiba E
    Ultramicroscopy; 2005 Oct; 104(3-4):226-32. PubMed ID: 15936146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium nanostructures and nanoparticles from molecular precursors on highly ordered pyrolytic graphite.
    Díaz-Ayala R; Fachini ER; Raptis R; Cabrera CR
    Langmuir; 2006 Nov; 22(24):10185-95. PubMed ID: 17107020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focused-ion-beam-assisted selective control of graphene layers: acquisition of clean-cut ultra thin graphitic film.
    Lee KM; Neogi A; Perez JM; Choi TY
    Nanotechnology; 2010 May; 21(20):205303. PubMed ID: 20413836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new view of electrochemistry at highly oriented pyrolytic graphite.
    Patel AN; Collignon MG; O'Connell MA; Hung WO; McKelvey K; Macpherson JV; Unwin PR
    J Am Chem Soc; 2012 Dec; 134(49):20117-30. PubMed ID: 23145936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of imatinib with liposomes: voltammetric and AFM characterization.
    Diculescu VC; Chiorcea-Paquim AM; Tugulea L; Vivan M; Oliveira-Brett AM
    Bioelectrochemistry; 2009 Feb; 74(2):278-88. PubMed ID: 19119081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological imaging of single methylcellulose chains and their thermoresponsive assembly on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Tatsumi D; Wariishi H
    Biomacromolecules; 2007 Dec; 8(12):3848-52. PubMed ID: 18004808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite.
    Huc V; Bendiab N; Rosman N; Ebbesen T; Delacour C; Bouchiat V
    Nanotechnology; 2008 Nov; 19(45):455601. PubMed ID: 21832778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.
    Gorodetsky AA; Barton JK
    Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.