BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21508457)

  • 21. Detection of novel gaseous states at the highly oriented pyrolytic graphite-water interface.
    Zhang XH; Zhang X; Sun J; Zhang Z; Li G; Fang H; Xiao X; Zeng X; Hu J
    Langmuir; 2007 Feb; 23(4):1778-83. PubMed ID: 17279656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-controlled assembly of high ordered/disordered dodecylamine layers on HOPG: consequences for DNA patterning.
    Adamcik J; Tobenas S; Di Santo G; Klinov D; Dietler G
    Langmuir; 2009 Mar; 25(5):3159-62. PubMed ID: 19437780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AFM lithography of aluminum for fabrication of nanomechanical systems.
    Davis ZJ; Abadal G; Hansen O; Borisé X; Barniol N; Pérez-Murano F; Boisen A
    Ultramicroscopy; 2003; 97(1-4):467-72. PubMed ID: 12801703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conductive supports for combined AFM-SECM on biological membranes.
    Frederix PL; Bosshart PD; Akiyama T; Chami M; Gullo MR; Blackstock JJ; Dooleweerdt K; de Rooij NF; Staufer U; Engel A
    Nanotechnology; 2008 Sep; 19(38):384004. PubMed ID: 21832564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical atomic force microscopy using a tip-attached redox mediator for topographic and functional imaging of nanosystems.
    Anne A; Cambril E; Chovin A; Demaille C; Goyer C
    ACS Nano; 2009 Oct; 3(10):2927-40. PubMed ID: 19769340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology of platinum electrodeposits in the three-dimensional sublayer to full layer range produced under different potential modulations on highly oriented pyrolytic graphite.
    Rodríguez Nieto FJ; Pasquale MA; Cabrera CR; Arvia AJ
    Langmuir; 2006 Dec; 22(25):10472-82. PubMed ID: 17129018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy.
    Kolagatla S; Subramanian P; Schechter A
    Nanoscale; 2018 Apr; 10(15):6962-6970. PubMed ID: 29610805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of chitosan onto carbonaceous surfaces and its application: atomic force microscopy study.
    Tan S; Liu Z; Zu Y; Fu Y; Xing Z; Zhao L; Sun T; Zhou Z
    Nanotechnology; 2011 Apr; 22(15):155703. PubMed ID: 21389576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ evaluation of anticancer drug methotrexate-DNA interaction using a DNA-electrochemical biosensor and AFM characterization.
    Pontinha AD; Jorge SM; Chiorcea Paquim AM; Diculescu VC; Oliveira-Brett AM
    Phys Chem Chem Phys; 2011 Mar; 13(12):5227-34. PubMed ID: 21359288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probe-induced native oxide decomposition and localized oxidation on 6H-SiC (0001) surface: an atomic force microscopy investigation.
    Xie XN; Chung HJ; Xu H; Xu X; Sow CH; Wee AT
    J Am Chem Soc; 2004 Jun; 126(24):7665-75. PubMed ID: 15198614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water desorption from nanostructured graphite surfaces.
    Clemens A; Hellberg L; Grönbeck H; Chakarov D
    Phys Chem Chem Phys; 2013 Dec; 15(47):20456-62. PubMed ID: 24018989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals.
    Hillier AC; Ward MD
    Science; 1994 Mar; 263(5151):1261-4. PubMed ID: 17817430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convex and concave nanodots and lines induced on HOPG surfaces by AFM voltages in ambient air.
    Jiang Y; Guo W
    Nanotechnology; 2008 Aug; 19(34):345302. PubMed ID: 21730644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conductive AFM microscopy study of the carrier transport and storage in Ge nanocrystals grown by dewetting.
    Gacem K; El Hdiy A; Troyon M; Berbezier I; Ronda A
    Nanotechnology; 2010 Feb; 21(6):065706. PubMed ID: 20057032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrostatic nanolithography in polymers using atomic force microscopy.
    Lyuksyutov SF; Vaia RA; Paramonov PB; Juhl S; Waterhouse L; Ralich RM; Sigalov G; Sancaktar E
    Nat Mater; 2003 Jul; 2(7):468-72. PubMed ID: 12819776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipoic acid-palladium complex interaction with DNA, voltammetric and AFM characterization.
    Corduneanu O; Chiorcea-Paquim AM; Garnett M; Oliveira-Brett AM
    Talanta; 2009 Mar; 77(5):1843-53. PubMed ID: 19159808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2013 Jan; 29(2):620-32. PubMed ID: 23210847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-tuned assembly of porphyrin coordination oligomers.
    Koepf M; Wytko JA; Bucher JP; Weiss J
    J Am Chem Soc; 2008 Jul; 130(30):9994-10001. PubMed ID: 18611017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-situ atomic force microscopy (AFM) imaging: influence of AFM probe geometry on diffusion to microscopic surfaces.
    Burt DP; Wilson NR; Janus U; Macpherson JV; Unwin PR
    Langmuir; 2008 Nov; 24(22):12867-76. PubMed ID: 18558780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.