These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 21508467)

  • 1. Dynamics of red blood cells and vesicles in microchannels of oscillating width.
    Braunmüller S; Schmid L; Franke T
    J Phys Condens Matter; 2011 May; 23(18):184116. PubMed ID: 21508467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the problem of slipper shapes of red blood cells in the microvasculature.
    Tahiri N; Biben T; Ez-Zahraouy H; Benyoussef A; Misbah C
    Microvasc Res; 2013 Jan; 85():40-5. PubMed ID: 23063869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape transitions of fluid vesicles and red blood cells in capillary flows.
    Noguchi H; Gompper G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14159-64. PubMed ID: 16186506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels.
    Uzoigwe C
    Med Hypotheses; 2006; 67(5):1159-63. PubMed ID: 16797867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.
    Fedosov DA; Peltomäki M; Gompper G
    Soft Matter; 2014 Jun; 10(24):4258-67. PubMed ID: 24752231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiflexible polymer conformation, distribution and migration in microcapillary flows.
    Chelakkot R; Winkler RG; Gompper G
    J Phys Condens Matter; 2011 May; 23(18):184117. PubMed ID: 21508477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheology of red blood cells under flow in highly confined microchannels. II. Effect of focusing and confinement.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7207-17. PubMed ID: 25068313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations.
    Noguchi H; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011901. PubMed ID: 16089995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic lift of vesicles and red blood cells in flow--from Fåhræus & Lindqvist to microfluidic cell sorting.
    Geislinger TM; Franke T
    Adv Colloid Interface Sci; 2014 Jun; 208():161-76. PubMed ID: 24674656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic analysis of capillary in finger nail-fold using computational fluid dynamics and image estimation.
    Shih TC; Zhang G; Wu CC; Hsiao HD; Wu TH; Lin KP; Huang TC
    Microvasc Res; 2011 Jan; 81(1):68-72. PubMed ID: 21047523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous oscillations in cerebrocortical capillary red blood cell velocity after nitric oxide synthase inhibition.
    Biswal BB; Hudetz AG
    Microvasc Res; 1996 Jul; 52(1):1-12. PubMed ID: 8812747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
    Aouane O; Thiébaud M; Benyoussef A; Wagner C; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033011. PubMed ID: 25314533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic interaction between two nonspherical capsules in shear flow.
    Le DV; Chiam KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056322. PubMed ID: 22181513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Red cell shape--a biophysical analysis].
    Rusu V; Lăcătuşu D; Răileanu I
    Rev Med Chir Soc Med Nat Iasi; 2007; 111(1):194-9. PubMed ID: 17595867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation of a single red blood cell in bounded Poiseuille flows.
    Shi L; Pan TW; Glowinski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016307. PubMed ID: 22400658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why do red blood cells have asymmetric shapes even in a symmetric flow?
    Kaoui B; Biros G; Misbah C
    Phys Rev Lett; 2009 Oct; 103(18):188101. PubMed ID: 19905834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.