These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21508475)

  • 1. Wetting, roughness and flow boundary conditions.
    Vinogradova OI; Belyaev AV
    J Phys Condens Matter; 2011 May; 23(18):184104. PubMed ID: 21508475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting morphologies and their transitions in grooved substrates.
    Seemann R; Brinkmann M; Herminghaus S; Khare K; Law BM; McBride S; Kostourou K; Gurevich E; Bommer S; Herrmann C; Michler D
    J Phys Condens Matter; 2011 May; 23(18):184108. PubMed ID: 21508471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces.
    Persson BN
    J Phys Condens Matter; 2010 Jul; 22(26):265004. PubMed ID: 21386470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale.
    Straube AV
    J Phys Condens Matter; 2011 May; 23(18):184122. PubMed ID: 21508483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces.
    Aksoy G; Polat H; Polat M; Coskun G
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):254-9. PubMed ID: 17097279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces.
    Yang J; Rose FR; Gadegaard N; Alexander MR
    Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport, phase transitions, and wetting in micro/nanochannels: a phase field/DDFT approach.
    Mickel W; Joly L; Biben T
    J Chem Phys; 2011 Mar; 134(9):094105. PubMed ID: 21384948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems.
    Léonforte F; Servantie J; Pastorino C; Müller M
    J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.
    Luo Y; Song W; Wang X
    Micron; 2016 Mar; 82():9-16. PubMed ID: 26760225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip effects in polymer thin films.
    Bäumchen O; Jacobs K
    J Phys Condens Matter; 2010 Jan; 22(3):033102. PubMed ID: 21386275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional liquid spreading over chemically defined radial wettability gradients.
    Bliznyuk O; Seddon JR; Veligura V; Kooij ES; Zandvliet HJ; Poelsema B
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4141-8. PubMed ID: 22839421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanohydrodynamics: the intrinsic flow boundary condition on smooth surfaces.
    Cottin-Bizonne C; Steinberger A; Cross B; Raccurt O; Charlaix E
    Langmuir; 2008 Feb; 24(4):1165-72. PubMed ID: 18266337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces.
    Padial-Molina M; Galindo-Moreno P; Fernández-Barbero JE; O'Valle F; Jódar-Reyes AB; Ortega-Vinuesa JL; Ramón-Torregrosa PJ
    Acta Biomater; 2011 Feb; 7(2):771-8. PubMed ID: 20807595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.
    Voronov RS; Papavassiliou DV; Lee LL
    J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures.
    Ranella A; Barberoglou M; Bakogianni S; Fotakis C; Stratakis E
    Acta Biomater; 2010 Jul; 6(7):2711-20. PubMed ID: 20080216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface wettability on the adhesion of proteins.
    Sethuraman A; Han M; Kane RS; Belfort G
    Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of "wettability" of biomaterials on culture cells.
    Yanagisawa I; Sakuma H; Shimura M; Wakamatsu Y; Yanagisawa S; Sairenji E
    J Oral Implantol; 1989; 15(3):168-77. PubMed ID: 2640248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent description of electrohydrodynamics in narrow fluidic confinements in the presence of hydrophobic interactions.
    Chakraborty J; Pati S; Som SK; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046305. PubMed ID: 22680572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.