These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21509854)

  • 1. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep.
    Brandon MP; Bogaard AR; Andrews CM; Hasselmo ME
    Hippocampus; 2012 Mar; 22(3):604-18. PubMed ID: 21509854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum.
    Hasselmo ME
    Eur J Neurosci; 2008 Oct; 28(7):1301-15. PubMed ID: 18973557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep.
    Montgomery SM; Sirota A; Buzsáki G
    J Neurosci; 2008 Jun; 28(26):6731-41. PubMed ID: 18579747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Awake replay of remote experiences in the hippocampus.
    Karlsson MP; Frank LM
    Nat Neurosci; 2009 Jul; 12(7):913-8. PubMed ID: 19525943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep.
    Louie K; Wilson MA
    Neuron; 2001 Jan; 29(1):145-56. PubMed ID: 11182087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain stem gigantocellular neurons: patterns of activity during behavior and sleep in the freely moving rat.
    Vertes RP
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):214-28. PubMed ID: 219157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Activity Microstates During Sleep.
    Miyawaki H; Billeh YN; Diba K
    Sleep; 2017 Jun; 40(6):. PubMed ID: 28431164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-associated changes in waking hippocampal sharp-wave ripples.
    Cowen SL; Gray DT; Wiegand JL; Schimanski LA; Barnes CA
    Hippocampus; 2020 Jan; 30(1):28-38. PubMed ID: 29981255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area.
    Alam MN; Gong H; Alam T; Jaganath R; McGinty D; Szymusiak R
    J Physiol; 2002 Jan; 538(Pt 2):619-31. PubMed ID: 11790824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system.
    Yoshida M; Hasselmo ME
    J Neurosci; 2009 Apr; 29(15):4945-52. PubMed ID: 19369563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study.
    Timofeev I; Grenier F; Steriade M
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1924-9. PubMed ID: 11172052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics.
    Kudrimoti HS; Barnes CA; McNaughton BL
    J Neurosci; 1999 May; 19(10):4090-101. PubMed ID: 10234037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of the postsubiculum head direction signal from neural ensembles.
    Johnson A; Seeland K; Redish AD
    Hippocampus; 2005; 15(1):86-96. PubMed ID: 15390162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internally organized mechanisms of the head direction sense.
    Peyrache A; Lacroix MM; Petersen PC; Buzsáki G
    Nat Neurosci; 2015 Apr; 18(4):569-75. PubMed ID: 25730672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat.
    Steininger TL; Alam MN; Gong H; Szymusiak R; McGinty D
    Brain Res; 1999 Sep; 840(1-2):138-47. PubMed ID: 10517961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions.
    Han Y; Shi YF; Xi W; Zhou R; Tan ZB; Wang H; Li XM; Chen Z; Feng G; Luo M; Huang ZL; Duan S; Yu YQ
    Curr Biol; 2014 Mar; 24(6):693-8. PubMed ID: 24613308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.
    Blanco W; Pereira CM; Cota VR; Souza AC; Rennó-Costa C; Santos S; Dias G; Guerreiro AM; Tort AB; Neto AD; Ribeiro S
    PLoS Comput Biol; 2015 May; 11(5):e1004241. PubMed ID: 26020963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking.
    Vazquez J; Baghdoyan HA
    Am J Physiol Regul Integr Comp Physiol; 2001 Feb; 280(2):R598-601. PubMed ID: 11208592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpositus and fastigial unit activity during sleep and waking in the cat.
    Palmer C
    Electroencephalogr Clin Neurophysiol; 1979 Apr; 46(4):357-70. PubMed ID: 85532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.