BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21510626)

  • 1. Asymmetric bioreduction of alkenes using ene-reductases YersER and KYE1 and effects of organic solvents.
    Yanto Y; Winkler CK; Lohr S; Hall M; Faber K; Bommarius AS
    Org Lett; 2011 May; 13(10):2540-3. PubMed ID: 21510626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
    Stuermer R; Hauer B; Hall M; Faber K
    Curr Opin Chem Biol; 2007 Apr; 11(2):203-13. PubMed ID: 17353140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative characterization of novel ene-reductases from cyanobacteria.
    Fu Y; Castiglione K; Weuster-Botz D
    Biotechnol Bioeng; 2013 May; 110(5):1293-301. PubMed ID: 23280373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds.
    Winkler CK; Tasnádi G; Clay D; Hall M; Faber K
    J Biotechnol; 2012 Dec; 162(4):381-9. PubMed ID: 22498437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly efficient ADH-coupled NADH-recycling system for the asymmetric bioreduction of carbon-carbon double bonds using enoate reductases.
    Tauber K; Hall M; Kroutil W; Fabian WM; Faber K; Glueck SM
    Biotechnol Bioeng; 2011 Jun; 108(6):1462-7. PubMed ID: 21328323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreduction and disproportionation of cyclohex-2-enone catalyzed by ene-reductase OYE-1 in 'micro-aqueous' organic solvents.
    Clay D; Winkler CK; Tasnádi G; Faber K
    Biotechnol Lett; 2014 Jun; 36(6):1329-33. PubMed ID: 24563324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F
    Kang SW; Antoney J; Frkic RL; Lupton DW; Speight R; Scott C; Jackson CJ
    Biochemistry; 2023 Feb; 62(3):873-891. PubMed ID: 36637210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase.
    Müller A; Hauer B; Rosche B
    Biotechnol Bioeng; 2007 Sep; 98(1):22-9. PubMed ID: 17657768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.
    Adalbjörnsson BV; Toogood HS; Fryszkowska A; Pudney CR; Jowitt TA; Leys D; Scrutton NS
    Chembiochem; 2010 Jan; 11(2):197-207. PubMed ID: 19943268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans.
    Richter N; Gröger H; Hummel W
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):79-89. PubMed ID: 20717668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite stereochemical courses for enzyme-mediated alkene reductions of an enantiomeric substrate pair.
    Bougioukou DJ; Stewart JD
    J Am Chem Soc; 2008 Jun; 130(24):7655-8. PubMed ID: 18500801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an ene-reductase from Meyerozyma guilliermondii for asymmetric bioreduction of α,β-unsaturated compounds.
    Zhang B; Zheng L; Lin J; Wei D
    Biotechnol Lett; 2016 Sep; 38(9):1527-34. PubMed ID: 27193896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence and chromosomal localization of the gene encoding the Old Yellow Enzyme from Kluyveromyces lactis.
    Miranda M; Ramírez J; Guevara S; Ongay-Larios L; Peña A; Coria R
    Yeast; 1995 Apr; 11(5):459-65. PubMed ID: 7597850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and application of a bi-functional redox biocatalyst through covalent co-immobilization of ene-reductase and glucose dehydrogenase.
    Nagy F; Gyujto I; Tasnádi G; Barna B; Balogh-Weiser D; Faber K; Poppe L; Hall M
    J Biotechnol; 2020 Nov; 323():246-253. PubMed ID: 32891641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant S. cerevisiae expressing Old Yellow Enzymes from non-conventional yeasts: an easy system for selective reduction of activated alkenes.
    Romano D; Contente ML; Molinari F; Eberini I; Ruvutuso E; Sensi C; Amaretti A; Rossi M; Raimondi S
    Microb Cell Fact; 2014 Apr; 13():60. PubMed ID: 24767246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereocomplementary bioreduction of alpha,beta-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol.
    Stueckler C; Hall M; Ehammer H; Pointner E; Kroutil W; Macheroux P; Faber K
    Org Lett; 2007 Dec; 9(26):5409-11. PubMed ID: 18031047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering towards nitroreductase functionality in ene-reductase scaffolds.
    Park JT; Gómez Ramos LM; Bommarius AS
    Chembiochem; 2015 Mar; 16(5):811-8. PubMed ID: 25703443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective synthesis of [7]helicene: dramatic effects of olefin additives and aromatic solvents in asymmetric olefin metathesis.
    Grandbois A; Collins SK
    Chemistry; 2008; 14(30):9323-9. PubMed ID: 18729116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE.
    Robescu MS; Niero M; Hall M; Cendron L; Bergantino E
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2051-2066. PubMed ID: 31930452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.