These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21510705)

  • 1. Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs.
    Bodnarchuk MI; Li L; Fok A; Nachtergaele S; Ismagilov RF; Talapin DV
    J Am Chem Soc; 2011 Jun; 133(23):8956-60. PubMed ID: 21510705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of ordering in single-component and binary nanocrystal superlattices by analysis of their autocorrelation functions.
    Pichler S; Bodnarchuk MI; Kovalenko MV; Yarema M; Springholz G; Talapin DV; Heiss W
    ACS Nano; 2011 Mar; 5(3):1703-12. PubMed ID: 21370900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile assembly of size- and shape-tunable IV-VI nanocrystals into superlattices.
    Wang Y; Dai Q; Zou B; Yu WW; Liu B; Zou G
    Langmuir; 2010 Dec; 26(24):19129-35. PubMed ID: 21117614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced thermal stability and magnetic properties in NaCl-type FePt-MnO binary nanocrystal superlattices.
    Dong A; Chen J; Ye X; Kikkawa JM; Murray CB
    J Am Chem Soc; 2011 Aug; 133(34):13296-9. PubMed ID: 21800910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binary Assembly of PbS and Au Nanocrystals: Patchy PbS Surface Ligand Coverage Stabilizes the CuAu Superlattice.
    Boles MA; Talapin DV
    ACS Nano; 2019 May; 13(5):5375-5384. PubMed ID: 31017762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement.
    Noh H; Choi C; Hung AM; Jin S; Cha JN
    ACS Nano; 2010 Sep; 4(9):5076-80. PubMed ID: 20718405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Templated self-assembly of one-dimensional CsPbX
    Pan A; Jurow M; Zhao Y; Qiu F; Liu Y; Yang J; Urban JJ; He L; Liu Y
    Nanoscale; 2017 Nov; 9(45):17688-17693. PubMed ID: 29119991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocrystal superlattices with thermally degradable hybrid inorganic-organic capping ligands.
    Kovalenko MV; Bodnarchuk MI; Talapin DV
    J Am Chem Soc; 2010 Nov; 132(43):15124-6. PubMed ID: 20936872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films.
    Sainato M; Shevitski B; Sahu A; Forster JD; Aloni S; Barillaro G; Urban JJ
    ACS Omega; 2017 Jul; 2(7):3681-3690. PubMed ID: 31457682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands.
    Wang S; Lu S; Tian X; Liu W; Si Y; Yang Y; Qiu H; Zhang H; Li J
    ACS Nano; 2023 Feb; 17(3):2792-2801. PubMed ID: 36651568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets.
    Chan EM; Alivisatos AP; Mathies RA
    J Am Chem Soc; 2005 Oct; 127(40):13854-61. PubMed ID: 16201806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of structural behavior of nanocrystals in randomly packed films and long-range ordered superlattices by time-resolved small angle X-ray scattering.
    Lee B; Podsiadlo P; Rupich S; Talapin DV; Rajh T; Shevchenko EV
    J Am Chem Soc; 2009 Nov; 131(45):16386-8. PubMed ID: 19863066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly ordered superlattices from polydisperse Ag nanoparticles: a comparative study of fractionation and self-correction.
    Yang Y; Kimura K
    J Phys Chem B; 2006 Dec; 110(48):24442-9. PubMed ID: 17134199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.