BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21510957)

  • 1. Post-translational modifications, a key process in CD36 function: lessons from the spontaneously hypertensive rat heart.
    Lauzier B; Merlen C; Vaillant F; McDuff J; Bouchard B; Beguin PC; Dolinsky VW; Foisy S; Villeneuve LR; Labarthe F; Dyck JR; Allen BG; Charron G; Des Rosiers C
    J Mol Cell Cardiol; 2011 Jul; 51(1):99-108. PubMed ID: 21510957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats.
    Aitman TJ; Glazier AM; Wallace CA; Cooper LD; Norsworthy PJ; Wahid FN; Al-Majali KM; Trembling PM; Mann CJ; Shoulders CC; Graf D; St Lezin E; Kurtz TW; Kren V; Pravenec M; Ibrahimi A; Abumrad NA; Stanton LW; Scott J
    Nat Genet; 1999 Jan; 21(1):76-83. PubMed ID: 9916795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Etomoxir-induced partial carnitine palmitoyltransferase-I (CPT-I) inhibition in vivo does not alter cardiac long-chain fatty acid uptake and oxidation rates.
    Luiken JJ; Niessen HE; Coort SL; Hoebers N; Coumans WA; Schwenk RW; Bonen A; Glatz JF
    Biochem J; 2009 Apr; 419(2):447-55. PubMed ID: 19138173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of Cd36 expression elicited by fish oil PUFA in spontaneously hypertensive rats.
    Alexander Aguilera A; Hernández Díaz G; Lara Barcelata M; Angulo Guerrero O; Oliart Ros RM
    J Nutr Biochem; 2006 Nov; 17(11):760-5. PubMed ID: 16517147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats.
    Pravenec M; Landa V; Zidek V; Musilova A; Kren V; Kazdova L; Aitman TJ; Glazier AM; Ibrahimi A; Abumrad NA; Qi N; Wang JM; St Lezin EM; Kurtz TW
    Nat Genet; 2001 Feb; 27(2):156-8. PubMed ID: 11175782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bowel resection and high-fat diet on heart CD36/fatty-acid translocase expression in a rat model of short-bowel syndrome.
    Sukhotnik I; May N; Gork AS; Chen M; Drongovski RA; Coran AG; Harmon CM
    Pediatr Surg Int; 2002 Oct; 18(7):620-3. PubMed ID: 12471478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinimidyl oleate, established inhibitor of CD36/FAT translocase inhibits complex III of mitochondrial respiratory chain.
    Drahota Z; Vrbacký M; Nůsková H; Kazdová L; Zídek V; Landa V; Pravenec M; Houstek J
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1348-51. PubMed ID: 20006584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism.
    Bonen A; Han XX; Habets DD; Febbraio M; Glatz JF; Luiken JJ
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1740-9. PubMed ID: 17264223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of the Cd36 chromosomal deletion underlying SHR defects in insulin action and fatty acid metabolism.
    Glazier AM; Scott J; Aitman TJ
    Mamm Genome; 2002 Feb; 13(2):108-13. PubMed ID: 11889559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation.
    Smith BK; Jain SS; Rimbaud S; Dam A; Quadrilatero J; Ventura-Clapier R; Bonen A; Holloway GP
    Biochem J; 2011 Jul; 437(1):125-34. PubMed ID: 21463259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm.
    Chabowski A; Coort SL; Calles-Escandon J; Tandon NN; Glatz JF; Luiken JJ; Bonen A
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E781-9. PubMed ID: 15166001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat.
    Christe ME; Rodgers RL
    J Mol Cell Cardiol; 1994 Oct; 26(10):1371-5. PubMed ID: 7869397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does Cd36 gene play a key role in disturbed glucose and fatty acid metabolism in Prague hypertensive hypertriglyceridemic rats?
    Kadlecová M; Cejka J; Zicha J; Kunes J
    Physiol Res; 2004; 53(3):265-71. PubMed ID: 15209533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid.
    Labarthe F; Khairallah M; Bouchard B; Stanley WC; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1425-36. PubMed ID: 15550523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat.
    Tyther R; Ahmeda A; Johns E; McDonagh B; Sheehan D
    J Proteome Res; 2010 May; 9(5):2678-87. PubMed ID: 20359167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic profiling of hearts exposed to sevoflurane and propofol reveals distinct regulation of fatty acid and glucose oxidation: CD36 and pyruvate dehydrogenase as key regulators in anesthetic-induced fuel shift.
    Wang L; Ko KW; Lucchinetti E; Zhang L; Troxler H; Hersberger M; Omar MA; Posse de Chaves EI; Lopaschuk GD; Clanachan AS; Zaugg M
    Anesthesiology; 2010 Sep; 113(3):541-51. PubMed ID: 20683255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiamine attenuates the hypertension and metabolic abnormalities in CD36-defective SHR: uncoupling of glucose oxidation from cellular entry accompanied with enhanced protein O-GlcNAcylation in CD36 deficiency.
    Tanaka T; Sohmiya K; Kono T; Terasaki F; Horie R; Ohkaru Y; Muramatsu M; Takai S; Miyazaki M; Kitaura Y
    Mol Cell Biochem; 2007 May; 299(1-2):23-35. PubMed ID: 16645728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.