BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21511266)

  • 1. Characterization and dissolution properties of ruthenium oxides.
    Luxton TP; Eick MJ; Scheckel KG
    J Colloid Interface Sci; 2011 Jul; 359(1):30-9. PubMed ID: 21511266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate adsorption on ruthenium oxides: A spectroscopic and kinetic investigation.
    Luxton TP; Eick MJ; Scheckel KG
    J Colloid Interface Sci; 2008 Sep; 325(1):23-30. PubMed ID: 18538337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically modified electrode with a film of nano ruthenium oxides stabilizing high valent RuO(4)(-) species and its redox-selective sequential transformation to polynuclear ruthenium oxide-metallocyanates.
    Kumar AS; Tanase T; Zen JM
    Langmuir; 2009 Dec; 25(23):13633-40. PubMed ID: 19928948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate.
    Li W; Liu H; Iglesia E
    J Phys Chem B; 2006 Nov; 110(46):23337-42. PubMed ID: 17107184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface chemistry study of RuO2/IrO2/TiO2 mixed-oxide electrodes.
    Barison S; Daolio S; Fabrizio M; De Battisti A
    Rapid Commun Mass Spectrom; 2004; 18(3):278-84. PubMed ID: 14755612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emanation thermal analysis study of the preparation of ruthenia-titania-based finely dispersed powders.
    Balek V; Mitsuhashi T; Zelenák V; Vecerníková E; Subrt J; Haneda H; Bezdicka P
    J Colloid Interface Sci; 2002 Apr; 248(1):47-53. PubMed ID: 16290502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A route for producing nano-CaRuO3 perovskite by combusting precursors prepared using reverse micelle synthesis.
    Jiao S; Kilby KT; Zhang L; Fray DJ
    Nanotechnology; 2009 Feb; 20(8):085606. PubMed ID: 19417454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the functionality of a carbon nanofiber-Pt-RuO2 system from charge storage to electrocatalysis.
    Balan BK; Kurungot S
    Inorg Chem; 2012 Sep; 51(18):9766-74. PubMed ID: 22946658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface complexation of catechol to metal oxides: an ATR-FTIR, adsorption, and dissolution study.
    Gulley-Stahl H; Hogan PA; Schmidt WL; Wall SJ; Buhrlage A; Bullen HA
    Environ Sci Technol; 2010 Jun; 44(11):4116-21. PubMed ID: 20429557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry of RuO(2)/IrO(2)/TiO(2) mixed-oxide electrodes: secondary ion mass spectrometric study of the changes induced by electrochemical treatment.
    Barison S; De Battisti A; Fabrizio M; Daolio S; Piccirillo C
    Rapid Commun Mass Spectrom; 2000; 14(23):2165-9. PubMed ID: 11114026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance.
    Sugimoto W; Iwata H; Yokoshima K; Murakami Y; Takasu Y
    J Phys Chem B; 2005 Apr; 109(15):7330-8. PubMed ID: 16851839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization of mono-ruthenium substituted alpha-Keggin-type tungstosilicate [alpha-SiW11O39RuIII(H2O)]5- to micro-oxo-bridged dimer in aqueous solution: synthesis, structure, and redox studies.
    Sadakane M; Tsukuma D; Dickman MH; Bassil BS; Kortz U; Capron M; Ueda W
    Dalton Trans; 2007 Jul; (26):2833-8. PubMed ID: 17592600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of RuO2 crystallization in borosilicate glass: an original in situ ESEM approach.
    Boucetta H; Podor R; Stievano L; Ravaux J; Carrier X; Casale S; Gossé S; Monteiro A; Schuller S
    Inorg Chem; 2012 Mar; 51(6):3478-89. PubMed ID: 22401585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNAPL remediation with in situ chemical oxidation using potassium permanganate. Part I. Mineralogy of Mn oxide and its dissolution in organic acids.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Jan; 68(1-2):39-53. PubMed ID: 14698870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetranuclear polybipyridyl complexes of Ru(II) and Mn(II), their electro- and photo-induced transformation into di-mu-oxo Mn(III)Mn(IV) hexanuclear complexes.
    Romain S; Baffert C; Dumas S; Chauvin J; Leprêtre JC; Daveloose D; Deronzier A; Collomb MN
    Dalton Trans; 2006 Dec; (48):5691-702. PubMed ID: 17146534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions.
    Gu B; Dong W; Liang L; Wall NA
    Environ Sci Technol; 2011 Jun; 45(11):4771-7. PubMed ID: 21539349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiometric sensor using sub-micron Cu2O-doped RuO2 sensing electrode with improved antifouling resistance.
    Zhuiykov S; Kats E; Marney D
    Talanta; 2010 Jul; 82(2):502-7. PubMed ID: 20602927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2).
    Xie Y; Wang Y; Singhal V; Giammar DE
    Environ Sci Technol; 2010 Feb; 44(3):1093-9. PubMed ID: 20063875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.