BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21511518)

  • 1. Hematite and carbonaceous materials in geological samples: a cautionary tale.
    Marshall CP; Marshall AO
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):133-7. PubMed ID: 21511518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the application of Raman spectroscopy to the detection of traces of life.
    Marshall CP; Edwards HG; Jehlicka J
    Astrobiology; 2010 Mar; 10(2):229-43. PubMed ID: 20402584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated analysis of carbon in powdered geological and environmental samples by Raman spectroscopy.
    Sparkes R; Hovius N; Galy A; Kumar RV; Liu JT
    Appl Spectrosc; 2013 Jul; 67(7):779-88. PubMed ID: 23816131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection.
    Bower DM; Steele A; Fries MD; Kater L
    Astrobiology; 2013 Jan; 13(1):103-13. PubMed ID: 23268624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ infrared microspectroscopy of approximately 850 million-year-old prokaryotic fossils.
    Igisu M; Nakashima S; Ueno Y; Awramik SM; Maruyama S
    Appl Spectrosc; 2006 Oct; 60(10):1111-20. PubMed ID: 17059662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples.
    Olivares M; Tarriño A; Murelaga X; Baceta JI; Castro K; Etxebarria N
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):492-7. PubMed ID: 19208495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectral characterization of dispersed carbonaceous matter in decorative crystalline limestones.
    Jehlicka J; Stastná A; Prikryl R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):404-9. PubMed ID: 19062335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman hyperspectral imaging of microfossils: potential pitfalls.
    Marshall CP; Olcott Marshall A
    Astrobiology; 2013 Oct; 13(10):920-31. PubMed ID: 24088070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils.
    Schopf JW; Kudryavtsev AB; Agresti DG; Czaja AD; Wdowiak TJ
    Astrobiology; 2005 Jun; 5(3):333-71. PubMed ID: 15941380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy.
    Faulstich FR; Castro HV; de Oliveira LF; Neumann R
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):102-5. PubMed ID: 21531611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging.
    El Amri C; Maurel MC; Sagon G; Baron MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2049-56. PubMed ID: 15911391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectroscopic study of the tellurite minerals: rajite and denningite.
    Frost RL; Dickfos MJ; Keeffe EC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1512-5. PubMed ID: 18586552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient life.
    Pasteris JD; Wopenka B
    Astrobiology; 2003; 3(4):727-38. PubMed ID: 14987478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and spectral resolution of carbonaceous material from hematite (α-Fe
    Smith JP; Smith FC; Booksh KS
    Analyst; 2017 Aug; 142(17):3140-3156. PubMed ID: 28678223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-Raman spectroscopic identification of natural mineral phases and their weathering products inside an abandoned zinc/lead mine.
    Goienaga N; Arrieta N; Carrero JA; Olivares M; Sarmiento A; Martinez-Arkarazo I; Fernández LA; Madariaga JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):66-74. PubMed ID: 21317026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation.
    Qu Y; Engdahl A; Zhu S; Vajda V; McLoughlin N
    Astrobiology; 2015 Oct; 15(10):825-42. PubMed ID: 26496525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman analysis of ancient pigments on a tile from the Citadel of Algiers.
    Kock LD; De Waal D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1348-54. PubMed ID: 18602862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Raman spectroscopy to detect fullerenes in geological materials.
    Jehlicka J; Frank O; Pokorný J; Rouzaud JN
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2364-7. PubMed ID: 16029858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications.
    Vítek P; Ali EM; Edwards HG; Jehlička J; Cox R; Page K
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():320-7. PubMed ID: 22079176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.