These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 21512099)
1. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC. Eastaugh CS; Pötzelsberger E; Hasenauer H Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099 [TBL] [Abstract][Full Text] [Related]
2. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968 [TBL] [Abstract][Full Text] [Related]
3. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231 [TBL] [Abstract][Full Text] [Related]
4. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved. Sigurdsson BD; Medhurst JL; Wallin G; Eggertsson O; Linder S Tree Physiol; 2013 Nov; 33(11):1192-205. PubMed ID: 23878169 [TBL] [Abstract][Full Text] [Related]
5. Disentangling the role of climate and soil on tree growth and its interaction with seed origin. Chakraborty D; Jandl R; Kapeller S; Schueler S Sci Total Environ; 2019 Mar; 654():393-401. PubMed ID: 30447577 [TBL] [Abstract][Full Text] [Related]
6. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106 [TBL] [Abstract][Full Text] [Related]
7. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Stinziano JR; Hüner NP; Way DA Tree Physiol; 2015 Dec; 35(12):1303-13. PubMed ID: 26543154 [TBL] [Abstract][Full Text] [Related]
8. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Krause K; Cherubini P; Bugmann H; Schleppi P Tree Physiol; 2012 Dec; 32(12):1471-81. PubMed ID: 23135740 [TBL] [Abstract][Full Text] [Related]
9. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010 [TBL] [Abstract][Full Text] [Related]
10. Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles. Luiro J; Kukkola M; Saarsalmi A; Tamminen P; Helmisaari HS Tree Physiol; 2010 Jan; 30(1):78-88. PubMed ID: 19934174 [TBL] [Abstract][Full Text] [Related]
11. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
12. Updating beliefs and combining evidence in adaptive forest management under climate change: a case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany. Yousefpour R; Temperli C; Bugmann H; Elkin C; Hanewinkel M; Meilby H; Jacobsen JB; Thorsen BJ J Environ Manage; 2013 Jun; 122():56-64. PubMed ID: 23557671 [TBL] [Abstract][Full Text] [Related]
14. Risk of genetic maladaptation due to climate change in three major European tree species. Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600 [TBL] [Abstract][Full Text] [Related]
15. Mineral nutrition and elevated [CO(2)] interact to modify δ(13)C, an index of gas exchange, in Norway spruce. Marshall JD; Linder S Tree Physiol; 2013 Nov; 33(11):1132-44. PubMed ID: 23425689 [TBL] [Abstract][Full Text] [Related]
16. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Adriaenssens S; Hansen K; Staelens J; Wuyts K; De Schrijver A; Baeten L; Boeckx P; Samson R; Verheyen K Sci Total Environ; 2012 Mar; 420():168-82. PubMed ID: 22325986 [TBL] [Abstract][Full Text] [Related]
17. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Nikolova PS; Andersen CP; Blaschke H; Matyssek R; Häberle KH Environ Pollut; 2010 Apr; 158(4):1071-8. PubMed ID: 19682778 [TBL] [Abstract][Full Text] [Related]
18. Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Wipfler P; Seifert T; Heerdt C; Werner H; Pretzsch H Plant Biol (Stuttg); 2005 Nov; 7(6):611-8. PubMed ID: 16388464 [TBL] [Abstract][Full Text] [Related]
19. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Gričar J; Prislan P; Gryc V; Vavrčík H; de Luis M; Cufar K Tree Physiol; 2014 Aug; 34(8):869-81. PubMed ID: 24728295 [TBL] [Abstract][Full Text] [Related]
20. Future carbon balance of China's forests under climate change and increasing CO2. Ju WM; Chen JM; Harvey D; Wang S J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]