These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 21512099)
21. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity. Rizzetto S; Belyazid S; Gégout JC; Nicolas M; Alard D; Corcket E; Gaudio N; Sverdrup H; Probst A Environ Pollut; 2016 Jun; 213():1016-1027. PubMed ID: 26809502 [TBL] [Abstract][Full Text] [Related]
23. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Kang S; Kimball JS; Running SW Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407 [TBL] [Abstract][Full Text] [Related]
24. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Grant RF; Margolis HA; Barr AG; Black TA; Dunn AL; Bernier PY; Bergeron O Tree Physiol; 2009 Jan; 29(1):1-17. PubMed ID: 19203928 [TBL] [Abstract][Full Text] [Related]
25. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil. Zhang J; George E Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945 [TBL] [Abstract][Full Text] [Related]
26. Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abies stand. Eldhuset TD; Lange H; de Wit HA Sci Total Environ; 2006 Oct; 369(1-3):344-56. PubMed ID: 16806407 [TBL] [Abstract][Full Text] [Related]
27. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498 [TBL] [Abstract][Full Text] [Related]
28. Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species. Sah SP; Ilvesniemi H Isotopes Environ Health Stud; 2006 Dec; 42(4):367-77. PubMed ID: 17090488 [TBL] [Abstract][Full Text] [Related]
29. Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) trees in a mixed forest stand. Alexou M; Hofer N; Liu X; Rennenberg H; Haberer K Plant Biol (Stuttg); 2007 Mar; 9(2):227-41. PubMed ID: 17357017 [TBL] [Abstract][Full Text] [Related]
30. The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest. Zapletal M; Pretel J; Chroust P; Cudlín P; Edwards-Jonášová M; Urban O; Pokorný R; Czerný R; Hůnová I Environ Pollut; 2012 Oct; 169():267-73. PubMed ID: 22682306 [TBL] [Abstract][Full Text] [Related]
31. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Vitali V; Büntgen U; Bauhus J Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403 [TBL] [Abstract][Full Text] [Related]
32. The complete nitrogen cycle of an N-saturated spruce forest ecosystem. Kreutzer K; Butterbach-Bahl K; Rennenberg H; Papen H Plant Biol (Stuttg); 2009 Sep; 11(5):643-9. PubMed ID: 19689771 [TBL] [Abstract][Full Text] [Related]
33. Recent climatic drying leads to age-independent growth reductions of white spruce stands in western Canada. Hogg EH; Michaelian M; Hook TI; Undershultz ME Glob Chang Biol; 2017 Dec; 23(12):5297-5308. PubMed ID: 28636146 [TBL] [Abstract][Full Text] [Related]
34. Increased spruce tree growth in Central Europe since 1960s. Cienciala E; Altman J; Doležal J; Kopáček J; Štěpánek P; Ståhl G; Tumajer J Sci Total Environ; 2018 Apr; 619-620():1637-1647. PubMed ID: 29122345 [TBL] [Abstract][Full Text] [Related]
35. Crown allometry and growing space efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Pretzsch H; Schütze G Plant Biol (Stuttg); 2005 Nov; 7(6):628-39. PubMed ID: 16388466 [TBL] [Abstract][Full Text] [Related]
36. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Way DA; Oren R Tree Physiol; 2010 Jun; 30(6):669-88. PubMed ID: 20368338 [TBL] [Abstract][Full Text] [Related]
37. Large old trees increase growth under shifting climatic constraints: Aligning tree longevity and individual growth dynamics in primary mountain spruce forests. Begović K; Schurman JS; Svitok M; Pavlin J; Langbehn T; Svobodová K; Mikoláš M; Janda P; Synek M; Marchand W; Vitková L; Kozák D; Vostarek O; Čada V; Bače R; Svoboda M Glob Chang Biol; 2023 Jan; 29(1):143-164. PubMed ID: 36178428 [TBL] [Abstract][Full Text] [Related]
38. Stand basal area and solar radiation amplify white spruce climate sensitivity in interior Alaska: Evidence from carbon isotopes and tree rings. Nicklen EF; Roland CA; Csank AZ; Wilmking M; Ruess RW; Muldoon LA Glob Chang Biol; 2019 Mar; 25(3):911-926. PubMed ID: 30408264 [TBL] [Abstract][Full Text] [Related]
39. Does nitrogen deposition increase forest production? The role of phosphorus. Braun S; Thomas VF; Quiring R; Flückiger W Environ Pollut; 2010 Jun; 158(6):2043-52. PubMed ID: 20015583 [TBL] [Abstract][Full Text] [Related]
40. Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia). Zhao C; Chen L; Ma F; Yao B; Liu J Tree Physiol; 2008 Jan; 28(1):133-41. PubMed ID: 17938122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]