BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21513163)

  • 21. The Apicomplexan CDC/MACPF-like pore-forming proteins.
    Wade KR; Tweten RK
    Curr Opin Microbiol; 2015 Aug; 26():48-52. PubMed ID: 26025132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit.
    Slade DJ; Lovelace LL; Chruszcz M; Minor W; Lebioda L; Sodetz JM
    J Mol Biol; 2008 May; 379(2):331-42. PubMed ID: 18440555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Structural Basis for a Transition State That Regulates Pore Formation in a Bacterial Toxin.
    Wade KR; Lawrence SL; Farrand AJ; Hotze EM; Kuiper MJ; Gorman MA; Christie MP; Panjikar S; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane pore formation by human complement: functional importance of the transmembrane β-hairpin (TMH) segments of C8α and C9.
    Weiland MH; Qian Y; Sodetz JM
    Mol Immunol; 2014 Feb; 57(2):310-6. PubMed ID: 24239861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capturing pore-forming intermediates of MACPF and binary toxin assemblies by cryoEM.
    Couves EC; Bubeck D
    Curr Opin Struct Biol; 2022 Aug; 75():102401. PubMed ID: 35700576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins.
    Evans JC; Johnstone BA; Lawrence SL; Morton CJ; Christie MP; Parker MW; Tweten RK
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms.
    Ni T; Gilbert RJC
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of human complement C8, a precursor to membrane attack.
    Bubeck D; Roversi P; Donev R; Morgan BP; Llorca O; Lea SM
    J Mol Biol; 2011 Jan; 405(2):325-30. PubMed ID: 21073882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector.
    Bayly-Jones C; Pang SS; Spicer BA; Whisstock JC; Dunstone MA
    Front Immunol; 2020; 11():581906. PubMed ID: 33178209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins?
    Ota K; Butala M; Viero G; Dalla Serra M; Sepčić K; Maček P
    Subcell Biochem; 2014; 80():271-91. PubMed ID: 24798017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes during pore formation by the perforin-related protein pleurotolysin.
    Lukoyanova N; Kondos SC; Farabella I; Law RH; Reboul CF; Caradoc-Davies TT; Spicer BA; Kleifeld O; Traore DA; Ekkel SM; Voskoboinik I; Trapani JA; Hatfaludi T; Oliver K; Hotze EM; Tweten RK; Whisstock JC; Topf M; Saibil HR; Dunstone MA
    PLoS Biol; 2015 Feb; 13(2):e1002049. PubMed ID: 25654333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Ancient Molecular Arms Race:
    Keb G; Fields KA
    Front Immunol; 2020; 11():1490. PubMed ID: 32760406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exaptation of two ancient immune proteins into a new dimeric pore-forming toxin in snails.
    Giglio ML; Ituarte S; Milesi V; Dreon MS; Brola TR; Caramelo J; Ip JCH; Maté S; Qiu JW; Otero LH; Heras H
    J Struct Biol; 2020 Aug; 211(2):107531. PubMed ID: 32446810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of pore-forming molecules in immune defense and development of the Mediterranean mussel (Mytilus galloprovincialis).
    Estévez-Calvar N; Romero A; Figueras A; Novoa B
    Dev Comp Immunol; 2011 Oct; 35(10):1017-31. PubMed ID: 21530583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disparate proteins use similar architectures to damage membranes.
    Anderluh G; Lakey JH
    Trends Biochem Sci; 2008 Oct; 33(10):482-90. PubMed ID: 18778941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of growth factor signalling by MACPF proteins.
    Bakopoulos D; Whisstock JC; Johnson TK
    Biochem Soc Trans; 2019 Jun; 47(3):801-810. PubMed ID: 31209154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of MACPF proteins in the biology of malaria and other apicomplexan parasites.
    Tavares J; Amino R; Ménard R
    Subcell Biochem; 2014; 80():241-53. PubMed ID: 24798015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-function characterization of an insecticidal protein GNIP1Aa, a member of an MACPF and β-tripod families.
    Zaitseva J; Vaknin D; Krebs C; Doroghazi J; Milam SL; Balasubramanian D; Duck NB; Freigang J
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2897-2906. PubMed ID: 30728296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How protein engineering has revealed the molecular mechanisms of pore-forming toxins.
    Evans JC; Tweten RK
    Methods Enzymol; 2021; 649():47-70. PubMed ID: 33712197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.