These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21513287)

  • 61. Concentration profiles and spatial distribution of perfluoroalkyl substances in an industrial center with condensed fluorochemical facilities.
    Shan G; Wei M; Zhu L; Liu Z; Zhang Y
    Sci Total Environ; 2014 Aug; 490():351-9. PubMed ID: 24867700
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Behavior of perfluorinated compounds in soils during leaching experiments.
    Gellrich V; Stahl T; Knepper TP
    Chemosphere; 2012 May; 87(9):1052-6. PubMed ID: 22391048
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Input characterization of perfluoroalkyl substances in wastewater treatment plants: source discrimination by exploratory data analysis.
    Xiao F; Halbach TR; Simcik MF; Gulliver JS
    Water Res; 2012 Jun; 46(9):3101-9. PubMed ID: 22483712
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Planktonic microbial responses to perfluorinated compound (PFC) pollution: Integrating PFC distributions with community coalescence and metabolism.
    Wu JY; Hua ZL; Gu L
    Sci Total Environ; 2021 Sep; 788():147743. PubMed ID: 34020088
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant effluent: discovery of a new class of perfluorinated acids.
    D'eon JC; Crozier PW; Furdui VI; Reiner EJ; Libelo EL; Mabury SA
    Environ Toxicol Chem; 2009 Oct; 28(10):2101-7. PubMed ID: 19463027
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China.
    Li P; Oyang X; Zhao Y; Tu T; Tian X; Li L; Zhao Y; Li J; Xiao Z
    Chemosphere; 2019 Jun; 225():659-667. PubMed ID: 30903841
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans.
    Lohmann R; Jurado E; Dijkstra HA; Dachs J
    Environ Pollut; 2013 Aug; 179():88-94. PubMed ID: 23665619
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evidence of Air Dispersion: HFPO-DA and PFOA in Ohio and West Virginia Surface Water and Soil near a Fluoropolymer Production Facility.
    Galloway JE; Moreno AVP; Lindstrom AB; Strynar MJ; Newton S; May AA; Weavers LK
    Environ Sci Technol; 2020 Jun; 54(12):7175-7184. PubMed ID: 32458687
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Incidence of Pfas in soil following long-term application of class B biosolids.
    Pepper IL; Brusseau ML; Prevatt FJ; Escobar BA
    Sci Total Environ; 2021 Nov; 793():148449. PubMed ID: 34174610
    [TBL] [Abstract][Full Text] [Related]  

  • 70. PFAS in soil and groundwater following historical land application of biosolids.
    Johnson GR
    Water Res; 2022 Mar; 211():118035. PubMed ID: 35032876
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil.
    Houtz EF; Higgins CP; Field JA; Sedlak DL
    Environ Sci Technol; 2013 Aug; 47(15):8187-95. PubMed ID: 23886337
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization and application of surface-molecular-imprinted-polymer modified TiO
    Hu L; Li Y; Zhang W
    Water Sci Technol; 2016 Sep; 74(6):1417-1425. PubMed ID: 27685971
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Radon-contaminated drinking water from private wells: an environmental health assessment examining a rural Colorado mountain community's exposure.
    Cappello MA; Ferraro A; Mendelsohn AB; Prehn AW
    J Environ Health; 2013 Nov; 76(4):18-24. PubMed ID: 24341157
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Anaerobic degradation of perfluorooctanoic acid (PFOA) in biosolids by Acidimicrobium sp. strain A6.
    Huang S; Sima M; Long Y; Messenger C; Jaffé PR
    J Hazard Mater; 2022 Feb; 424(Pt D):127699. PubMed ID: 34799154
    [TBL] [Abstract][Full Text] [Related]  

  • 75. PFAS soil and groundwater contamination
    Schroeder T; Bond D; Foley J
    Environ Sci Process Impacts; 2021 Mar; 23(2):291-301. PubMed ID: 33443261
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fluorous microgel star polymers: selective recognition and separation of polyfluorinated surfactants and compounds in water.
    Koda Y; Terashima T; Sawamoto M
    J Am Chem Soc; 2014 Nov; 136(44):15742-8. PubMed ID: 25300369
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Significance thresholds for the assessment of contaminated groundwater: perfluorinated and polyfluorinated chemicals.
    von der Trenck KT; Konietzka R; Biegel-Engler A; Brodsky J; Hädicke A; Quadflieg A; Stockerl R; Stahl T
    Environ Sci Eur; 2018; 30(1):19. PubMed ID: 29930891
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Guiding Communities Affected by PFASs: Tools for Tackling Contaminated Drinking Water.
    Seltenrich N
    Environ Health Perspect; 2019 Feb; 127(2):24003. PubMed ID: 30767559
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Hygienc standards and contamination of the living environment by industrial and agricultural waste products].
    MUCHA V; ROSIVAL L
    Cesk Hyg; 1961 Dec; 6():581-4. PubMed ID: 14476825
    [No Abstract]   [Full Text] [Related]  

  • 80. Increase in Lead Concentration in the Drinking Water of an Animal Care Facility.
    Davidowitz B; Boehm K; Banovetz S; Binkley N
    Contemp Top Lab Anim Sci; 1998 Jan; 37(1):51-53. PubMed ID: 12456178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.