These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 21513319)
1. Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes. Park JH; Schwartz Z; Olivares-Navarrete R; Boyan BD; Tannenbaum R Langmuir; 2011 May; 27(10):5976-85. PubMed ID: 21513319 [TBL] [Abstract][Full Text] [Related]
2. Use of polyelectrolyte thin films to modulate osteoblast response to microstructured titanium surfaces. Park JH; Olivares-Navarrete R; Wasilewski CE; Boyan BD; Tannenbaum R; Schwartz Z Biomaterials; 2012 Jul; 33(21):5267-77. PubMed ID: 22541354 [TBL] [Abstract][Full Text] [Related]
3. Roughness and wettability of titanium implant surfaces modify the salivary pellicle composition. Martínez-Hernández M; Hannig M; García-Pérez VI; Olivares-Navarrete R; Fecher-Trost C; Almaguer-Flores A J Biomed Mater Res B Appl Biomater; 2021 Jul; 109(7):1017-1028. PubMed ID: 33252193 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of human plasma proteins to modified titanium surfaces. Sela MN; Badihi L; Rosen G; Steinberg D; Kohavi D Clin Oral Implants Res; 2007 Oct; 18(5):630-8. PubMed ID: 17484735 [TBL] [Abstract][Full Text] [Related]
5. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
6. Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Park JH; Olivares-Navarrete R; Baier RE; Meyer AE; Tannenbaum R; Boyan BD; Schwartz Z Acta Biomater; 2012 May; 8(5):1966-75. PubMed ID: 22154860 [TBL] [Abstract][Full Text] [Related]
8. Surface Functionalization with Proanthocyanidins Provides an Anti-Oxidant Defense Mechanism That Improves the Long-Term Stability and Osteogenesis of Titanium Implants. Tang J; Chen L; Yan D; Shen Z; Wang B; Weng S; Wu Z; Xie Z; Shao J; Yang L; Shen L Int J Nanomedicine; 2020; 15():1643-1659. PubMed ID: 32210558 [TBL] [Abstract][Full Text] [Related]
9. The roles of PI3K/Akt signaling pathway in regulating MC3T3-E1 preosteoblast proliferation and differentiation on SLA and SLActive titanium surfaces. Gu YX; Du J; Si MS; Mo JJ; Qiao SC; Lai HC J Biomed Mater Res A; 2013 Mar; 101(3):748-54. PubMed ID: 22941963 [TBL] [Abstract][Full Text] [Related]
10. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Rupp F; Scheideler L; Olshanska N; de Wild M; Wieland M; Geis-Gerstorfer J J Biomed Mater Res A; 2006 Feb; 76(2):323-34. PubMed ID: 16270344 [TBL] [Abstract][Full Text] [Related]
11. Different Methods to Modify the Hydrophilicity of Titanium Implants with Biomimetic Surface Topography to Induce Variable Responses in Bone Marrow Stromal Cells. Jacobs TW; Dillon JT; Cohen DJ; Boyan BD; Schwartz Z Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667238 [TBL] [Abstract][Full Text] [Related]
12. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces. Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925 [TBL] [Abstract][Full Text] [Related]
13. Polyelectrolyte multilayer-calcium phosphate composite coatings for metal implants. Elyada A; Garti N; Füredi-Milhofer H Biomacromolecules; 2014 Oct; 15(10):3511-21. PubMed ID: 25105729 [TBL] [Abstract][Full Text] [Related]
14. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Zankovych S; Diefenbeck M; Bossert J; Mückley T; Schrader C; Schmidt J; Schubert H; Bischoff S; Faucon M; Finger U; Jandt KD Acta Biomater; 2013 Jan; 9(1):4926-34. PubMed ID: 22902814 [TBL] [Abstract][Full Text] [Related]
15. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Bumgardner JD; Wiser R; Elder SH; Jouett R; Yang Y; Ong JL J Biomater Sci Polym Ed; 2003; 14(12):1401-9. PubMed ID: 14870943 [TBL] [Abstract][Full Text] [Related]
16. Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Ayobian-Markazi N; Karimi M; Safar-Hajhosseini A Lasers Med Sci; 2015 Feb; 30(2):561-6. PubMed ID: 23760881 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of ferulic acid-modified water soluble chitosan and poly (γ-glutamic acid) polyelectrolyte films through layer-by-layer assembly towards protein adsorption. Panda PK; Yang JM; Chang YH Int J Biol Macromol; 2021 Feb; 171():457-464. PubMed ID: 33421474 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment. Zhang EW; Wang YB; Shuai KG; Gao F; Bai YJ; Cheng Y; Xiong XL; Zheng YF; Wei SC Biomed Mater; 2011 Apr; 6(2):025001. PubMed ID: 21293055 [TBL] [Abstract][Full Text] [Related]
19. The roles of extracellular signal-regulated kinase 1/2 pathway in regulating osteogenic differentiation of murine preosteoblasts MC3T3-E1 cells on roughened titanium surfaces. Zhuang LF; Jiang HH; Qiao SC; Appert C; Si MS; Gu YX; Lai HC J Biomed Mater Res A; 2012 Jan; 100(1):125-33. PubMed ID: 21997903 [TBL] [Abstract][Full Text] [Related]
20. Effect of Plasma Oxidation-Treated TiOx Film on Early Osseointegration. Jiang H; Zhang T; Zhou W; Lin Z; Liu Z Int J Oral Maxillofac Implants; 2018; 33(5):1011-1018. PubMed ID: 30231086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]