These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21513343)

  • 1. Microfluidic transendothelial electrical resistance measurement device that enables blood flow and postgrowth experiments.
    Vogel PA; Halpin ST; Martin RS; Spence DM
    Anal Chem; 2011 Jun; 83(11):4296-301. PubMed ID: 21513343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device.
    Halpin ST; Spence DM
    Anal Chem; 2010 Sep; 82(17):7492-7. PubMed ID: 20681630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device.
    D'Amico Oblak T; Root P; Spence DM
    Anal Chem; 2006 May; 78(9):3193-7. PubMed ID: 16643013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput biophysical measurement of human red blood cells.
    Zheng Y; Shojaei-Baghini E; Azad A; Wang C; Sun Y
    Lab Chip; 2012 Jul; 12(14):2560-7. PubMed ID: 22581052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea.
    Lockwood SY; Erkal JL; Spence DM
    Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct quantification of transendothelial electrical resistance in organs-on-chips.
    van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI
    Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell stimulation of platelet nitric oxide production indicated by quantitative monitoring of the communication between cells in the bloodstream.
    Carroll JS; Ku CJ; Karunarathne W; Spence DM
    Anal Chem; 2007 Jul; 79(14):5133-8. PubMed ID: 17580956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y; Nguyen J; Wang C; Sun Y
    Lab Chip; 2013 Aug; 13(16):3275-83. PubMed ID: 23798004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel.
    Spence DM; Torrence NJ; Kovarik ML; Martin RS
    Analyst; 2004 Nov; 129(11):995-1000. PubMed ID: 15508026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the effects of estradiol on endothelial nitric oxide stimulated by erythrocyte-derived ATP using a microfluidic approach.
    Letourneau S; Hernandez L; Faris AN; Spence DM
    Anal Bioanal Chem; 2010 Aug; 397(8):3369-75. PubMed ID: 20393839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel multishear microdevice for studying cell mechanics.
    Chau L; Doran M; Cooper-White J
    Lab Chip; 2009 Jul; 9(13):1897-902. PubMed ID: 19532965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pericytes and various cytokines on integrity of endothelial monolayer originated from blood-nerve barrier: an in vitro study.
    Iwasaki T; Kanda T; Mizusawa H
    J Med Dent Sci; 1999 Mar; 46(1):31-40. PubMed ID: 12160211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A portable cell-based impedance sensor for toxicity testing of drinking water.
    Curtis TM; Widder MW; Brennan LM; Schwager SJ; van der Schalie WH; Fey J; Salazar N
    Lab Chip; 2009 Aug; 9(15):2176-83. PubMed ID: 19606294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function.
    Griep LM; Wolbers F; de Wagenaar B; ter Braak PM; Weksler BB; Romero IA; Couraud PO; Vermes I; van der Meer AD; van den Berg A
    Biomed Microdevices; 2013 Feb; 15(1):145-50. PubMed ID: 22955726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells.
    Zenker D; Begley D; Bratzke H; Rübsamen-Waigmann H; von Briesen H
    J Physiol; 2003 Sep; 551(Pt 3):1023-32. PubMed ID: 12829721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand patterning of protein matrixes inside a microfluidic device.
    Kaji H; Hashimoto M; Nishizawa M
    Anal Chem; 2006 Aug; 78(15):5469-73. PubMed ID: 16878884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic device for self-synchronised production of droplets.
    Gupta R; Baldock SJ; Carreras P; Fielden PR; Goddard NJ; Mohr S; Razavi BS; Brown BJ
    Lab Chip; 2011 Dec; 11(23):4052-6. PubMed ID: 22020312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic electrochemical sensor array for characterizing protein interactions with various functionalized surfaces.
    Dykstra PH; Roy V; Byrd C; Bentley WE; Ghodssi R
    Anal Chem; 2011 Aug; 83(15):5920-7. PubMed ID: 21688780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinergic P2Y2 receptors mediate rapid Ca(2+) mobilization, membrane hyperpolarization and nitric oxide production in human vascular endothelial cells.
    Raqeeb A; Sheng J; Ao N; Braun AP
    Cell Calcium; 2011 Apr; 49(4):240-8. PubMed ID: 21414662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of leukocyte-induced changes in endothelial barrier function.
    Gautam N; Hedqvist P; Lindbom L
    Br J Pharmacol; 1998 Nov; 125(5):1109-14. PubMed ID: 9846652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.