These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21513346)

  • 1. LigBuilder 2: a practical de novo drug design approach.
    Yuan Y; Pei J; Lai L
    J Chem Inf Model; 2011 May; 51(5):1083-91. PubMed ID: 21513346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Target Drug Design Using LigBuilder 3.
    Qing X; Wang S; Yuan Y; Pei J; Lai L
    Methods Mol Biol; 2021; 2266():279-298. PubMed ID: 33759133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEA3D: a computer-aided ligand design for structure-based drug design.
    Douguet D; Munier-Lehmann H; Labesse G; Pochet S
    J Med Chem; 2005 Apr; 48(7):2457-68. PubMed ID: 15801836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of experimental design to optimize docking performance: the case of LiGenDock, the docking module of LiGen, a new de novo design program.
    Beato C; Beccari AR; Cavazzoni C; Lorenzi S; Costantino G
    J Chem Inf Model; 2013 Jun; 53(6):1503-17. PubMed ID: 23590204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining geometric pocket detection and desolvation properties to detect putative ligand binding sites on proteins.
    Schneider S; Zacharias M
    J Struct Biol; 2012 Dec; 180(3):546-50. PubMed ID: 23023089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions.
    Zheng M; Xiong B; Luo C; Li S; Liu X; Shen Q; Li J; Zhu W; Luo X; Jiang H
    J Chem Inf Model; 2011 Nov; 51(11):2994-3004. PubMed ID: 21999432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of fragment binding.
    Ferenczy GG; Keserű GM
    J Chem Inf Model; 2012 Apr; 52(4):1039-45. PubMed ID: 22458364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CONCERTS: dynamic connection of fragments as an approach to de novo ligand design.
    Pearlman DA; Murcko MA
    J Med Chem; 1996 Apr; 39(8):1651-63. PubMed ID: 8648605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular complexity analysis of de novo designed ligands.
    Boda K; Johnson AP
    J Med Chem; 2006 Oct; 49(20):5869-79. PubMed ID: 17004702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a rule-based method for the assessment of protein druggability.
    Perola E; Herman L; Weiss J
    J Chem Inf Model; 2012 Apr; 52(4):1027-38. PubMed ID: 22448735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based de novo design, synthesis, and biological evaluation of the indole-based PPARgamma ligands (I).
    Dong X; Zhang Z; Wen R; Shen J; Shen X; Jiang H
    Bioorg Med Chem Lett; 2006 Nov; 16(22):5913-6. PubMed ID: 17010604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-based design of novel protein structures.
    Butterfoss GL; Kuhlman B
    Annu Rev Biophys Biomol Struct; 2006; 35():49-65. PubMed ID: 16689627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer design of bioactive molecules: a method for receptor-based de novo ligand design.
    Moon JB; Howe WJ
    Proteins; 1991; 11(4):314-28. PubMed ID: 1758885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LigBuilder V3: A Multi-Target
    Yuan Y; Pei J; Lai L
    Front Chem; 2020; 8():142. PubMed ID: 32181242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel computational tool for automated structure-based drug design.
    Böhm HJ
    J Mol Recognit; 1993 Sep; 6(3):131-7. PubMed ID: 8060670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HotLig: a molecular surface-directed approach to scoring protein-ligand interactions.
    Wang SH; Wu YT; Kuo SC; Yu J
    J Chem Inf Model; 2013 Aug; 53(8):2181-95. PubMed ID: 23862697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics.
    Fauman EB; Rai BK; Huang ES
    Curr Opin Chem Biol; 2011 Aug; 15(4):463-8. PubMed ID: 21704549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere.
    Yu J; Zhou Y; Tanaka I; Yao M
    Bioinformatics; 2010 Jan; 26(1):46-52. PubMed ID: 19846440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.