BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21513353)

  • 1. Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia.
    Poon Z; Chang D; Zhao X; Hammond PT
    ACS Nano; 2011 Jun; 5(6):4284-92. PubMed ID: 21513353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward therapeutic delivery with layer-by-layer engineered particles.
    Yan Y; Such GK; Johnston AP; Lomas H; Caruso F
    ACS Nano; 2011 Jun; 5(6):4252-7. PubMed ID: 21612259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic nanoparticles with a pH-sheddable layer for antitumor drug delivery.
    Wang J; Gong C; Wang Y; Wu G
    Colloids Surf B Biointerfaces; 2014 Jun; 118():218-25. PubMed ID: 24768265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs.
    Ramasamy T; Haidar ZS; Tran TH; Choi JY; Jeong JH; Shin BS; Choi HG; Yong CS; Kim JO
    Acta Biomater; 2014 Dec; 10(12):5116-5127. PubMed ID: 25169256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity.
    Deng L; Dong H; Dong A; Zhang J
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):107-17. PubMed ID: 26515259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling in vivo stability and biodistribution in electrostatically assembled nanoparticles for systemic delivery.
    Poon Z; Lee JB; Morton SW; Hammond PT
    Nano Lett; 2011 May; 11(5):2096-103. PubMed ID: 21524115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer.
    Peng N; Yu H; Yu W; Yang M; Chen H; Zou T; Deng K; Huang S; Liu Y
    Acta Biomater; 2020 Mar; 105():223-238. PubMed ID: 31926335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration.
    Kong SM; Costa DF; Jagielska A; Van Vliet KJ; Hammond PT
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34649991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery.
    Yang XZ; Du JZ; Dou S; Mao CQ; Long HY; Wang J
    ACS Nano; 2012 Jan; 6(1):771-81. PubMed ID: 22136582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of pH-Sensitive Doxorubicin Nanoparticles on Complex Tumor Microenvironments by Tailoring Multiple Physicochemical Properties.
    Chen H; Luo Q; Wang J; He H; Luo W; Zhang L; Xiao Q; Chen T; Xu X; Niu W; Ke Y; Wang Y
    ACS Appl Mater Interfaces; 2020 May; 12(20):22673-22686. PubMed ID: 32337980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release.
    Li Y; Wu H; Yang X; Jia M; Li Y; Huang Y; Lin J; Wu S; Hou Z
    Mol Pharm; 2014 Aug; 11(8):2915-27. PubMed ID: 24984984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy.
    Guan X; Guo Z; Wang T; Lin L; Chen J; Tian H; Chen X
    Biomacromolecules; 2017 Apr; 18(4):1342-1349. PubMed ID: 28272873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency.
    Sykes EA; Chen J; Zheng G; Chan WC
    ACS Nano; 2014 Jun; 8(6):5696-706. PubMed ID: 24821383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells.
    Tran TH; Ramasamy T; Choi JY; Nguyen HT; Pham TT; Jeong JH; Ku SK; Choi HG; Yong CS; Kim JO
    Int J Nanomedicine; 2015; 10():5249-62. PubMed ID: 26346426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel pH-responsive nanoparticles.
    Filippov S; Hrubý M; Konák C; Macková H; Spírková M; Stepánek P
    Langmuir; 2008 Sep; 24(17):9295-301. PubMed ID: 18686981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting.
    Szczepanowicz K; Bzowska M; Kruk T; Karabasz A; Bereta J; Warszynski P
    Colloids Surf B Biointerfaces; 2016 Jul; 143():463-471. PubMed ID: 27037784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding.
    Clawson C; Ton L; Aryal S; Fu V; Esener S; Zhang L
    Langmuir; 2011 Sep; 27(17):10556-61. PubMed ID: 21806013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel "mosaic-type" nanoparticle for selective drug release targeting hypoxic cancer cells.
    Wang W; Li X; Wang Z; Zhang J; Dong X; Wu Y; Fang C; Zhou A; Wu Y
    Nanoscale; 2019 Jan; 11(5):2211-2222. PubMed ID: 30656317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer.
    Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N
    Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-by-Layer Biomaterials for Drug Delivery.
    Alkekhia D; Hammond PT; Shukla A
    Annu Rev Biomed Eng; 2020 Jun; 22():1-24. PubMed ID: 32084319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.