These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21513371)

  • 1. An accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems using gradient-based diffusion and tau-leaping.
    Koh W; Blackwell KT
    J Chem Phys; 2011 Apr; 134(15):154103. PubMed ID: 21513371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved spatial direct method with gradient-based diffusion to retain full diffusive fluctuations.
    Koh W; Blackwell KT
    J Chem Phys; 2012 Oct; 137(15):154111. PubMed ID: 23083152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate stochastic simulation via the step anticipation tau-leaping (SAL) algorithm.
    Sehl M; Alekseyenko AV; Lange KL
    J Comput Biol; 2009 Sep; 16(9):1195-208. PubMed ID: 19772431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asynchronous τ-leaping.
    Jȩdrzejewski-Szmek Z; Blackwell KT
    J Chem Phys; 2016 Mar; 144(12):125104. PubMed ID: 27036481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical exact accelerated stochastic simulation algorithm.
    Orendorff D; Mjolsness E
    J Chem Phys; 2012 Dec; 137(21):214104. PubMed ID: 23231214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems.
    Lampoudi S; Gillespie DT; Petzold LR
    J Chem Phys; 2009 Mar; 130(9):094104. PubMed ID: 19275393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient step size selection for the tau-leaping simulation method.
    Cao Y; Gillespie DT; Petzold LR
    J Chem Phys; 2006 Jan; 124(4):044109. PubMed ID: 16460151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-Leaping: An Adaptive, Accelerated Stochastic Simulation Algorithm, Bridging [Formula: see text]-Leaping and R-Leaping.
    Lipková J; Arampatzis G; Chatelain P; Menze B; Koumoutsakos P
    Bull Math Biol; 2019 Aug; 81(8):3074-3096. PubMed ID: 29992453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient binomial leap method for simulating chemical kinetics.
    Peng X; Zhou W; Wang Y
    J Chem Phys; 2007 Jun; 126(22):224109. PubMed ID: 17581046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multinomial tau-leaping method for stochastic kinetic simulations.
    Pettigrew MF; Resat H
    J Chem Phys; 2007 Feb; 126(8):084101. PubMed ID: 17343434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased tau-leap methods for stochastic simulation of chemically reacting systems.
    Xu Z; Cai X
    J Chem Phys; 2008 Apr; 128(15):154112. PubMed ID: 18433195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral tau methods for stiff stochastic chemical systems.
    Yang Y; Rathinam M; Shen J
    J Chem Phys; 2011 Jan; 134(4):044129. PubMed ID: 21280709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspective: Stochastic algorithms for chemical kinetics.
    Gillespie DT; Hellander A; Petzold LR
    J Chem Phys; 2013 May; 138(17):170901. PubMed ID: 23656106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm.
    Iyengar KA; Harris LA; Clancy P
    J Chem Phys; 2010 Mar; 132(9):094101. PubMed ID: 20210383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An exact accelerated stochastic simulation algorithm.
    Mjolsness E; Orendorff D; Chatelain P; Koumoutsakos P
    J Chem Phys; 2009 Apr; 130(14):144110. PubMed ID: 19368432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A weak second order tau-leaping method for chemical kinetic systems.
    Hu Y; Li T; Min B
    J Chem Phys; 2011 Jul; 135(2):024113. PubMed ID: 21766931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic simulation of chemical kinetics.
    Gillespie DT
    Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending the Multi-level Method for the Simulation of Stochastic Biological Systems.
    Lester C; Baker RE; Giles MB; Yates CA
    Bull Math Biol; 2016 Aug; 78(8):1640-77. PubMed ID: 27515935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation Strategies for Calcium Microdomains and Calcium Noise.
    Wieder N; Fink RHA; von Wegner F
    Adv Exp Med Biol; 2020; 1131():771-797. PubMed ID: 31646534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth.
    Lecca P; Morpurgo D
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S14. PubMed ID: 23095709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.