These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21513590)

  • 1. 1064 nm Deep near-infrared (NIR) excited raman microspectroscopy for studying photolabile organisms.
    Ando M; Sugiura M; Hayashi H; Hamaguchi HO
    Appl Spectrosc; 2011 May; 65(5):488-92. PubMed ID: 21513590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer.
    Bergholt MS; Zheng W; Lin K; Ho KY; Teh M; Yeoh KG; So JB; Huang Z
    Biosens Bioelectron; 2011 Jun; 26(10):4104-10. PubMed ID: 21550225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues.
    Huang Z; Lui H; McLean DI; Korbelik M; Zeng H
    Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The diagnosis of lung cancer using 1064-nm excited near-infrared multichannel Raman spectroscopy.
    Yamazaki H; Kaminaka S; Kohda E; Mukai M; Hamaguchi HO
    Radiat Med; 2003; 21(1):1-6. PubMed ID: 12801137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of cyanobacteria using in-vivo fluoroscopy -- effect of cyanobacterial species, pigments, and colonies.
    Chang DW; Hobson P; Burch M; Lin TF
    Water Res; 2012 Oct; 46(16):5037-48. PubMed ID: 22824675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo measurement of human dermis by 1064 nm-excited fiber Raman spectroscopy.
    Naito S; Min YK; Sugata K; Osanai O; Kitahara T; Hiruma H; Hamaguchi H
    Skin Res Technol; 2008 Feb; 14(1):18-25. PubMed ID: 18211598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared excited Raman optical activity.
    Nafie LA; Brinson BE; Cao X; Rice DA; Rahim OM; Dukor RK; Halas NJ
    Appl Spectrosc; 2007 Oct; 61(10):1103-6. PubMed ID: 17958961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector machines.
    Widjaja E; Zheng W; Huang Z
    Int J Oncol; 2008 Mar; 32(3):653-62. PubMed ID: 18292943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis.
    Schulz H; Baranska M; Baranski R
    Biopolymers; 2005 Mar; 77(4):212-21. PubMed ID: 15674976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region.
    Lee JY; Kim SH; Moon DW; Lee ES
    Opt Express; 2009 Dec; 17(25):22281-95. PubMed ID: 20052151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars.
    Edwards HG; Villar SE; Parnell J; Cockell CS; Lee P
    Analyst; 2005 Jun; 130(6):917-23. PubMed ID: 15912241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.
    Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F
    Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques.
    Yang H; Irudayaraj J
    J Pharm Pharmacol; 2002 Sep; 54(9):1247-55. PubMed ID: 12356279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy.
    Heraud P; Beardall J; McNaughton D; Wood BR
    FEMS Microbiol Lett; 2007 Oct; 275(1):24-30. PubMed ID: 17854469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1064  nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence.
    Patil CA; Pence IJ; Lieber CA; Mahadevan-Jansen A
    Opt Lett; 2014 Jan; 39(2):303-6. PubMed ID: 24562132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques.
    Teh SK; Zheng W; Lau DP; Huang Z
    Analyst; 2009 Jun; 134(6):1232-9. PubMed ID: 19475153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS.
    Saager RB; Telleri NL; Berger AJ
    Neuroimage; 2011 Apr; 55(4):1679-85. PubMed ID: 21256223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundus near infrared fluorescence correlates with fundus near infrared reflectance.
    Weinberger AW; Lappas A; Kirschkamp T; Mazinani BA; Huth JK; Mohammadi B; Walter P
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3098-108. PubMed ID: 16799056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Near infrared Raman spectra analysis of rhizoma dioscoreae].
    Lin WS; Chen R; Li YZ; Feng SY; Huang ZF; Xie BX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):1095-7. PubMed ID: 18720808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.
    Balakrishnan G; Hu Y; Nielsen SB; Spiro TG
    Appl Spectrosc; 2005 Jun; 59(6):776-81. PubMed ID: 16053544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.