These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 21513596)
1. Surface-enhanced infrared spectroscopic studies of the catalytic behavior of silver nanoparticles on a germanium substrate. Liou YC; Yang J; Fasasi A; Griffiths PR Appl Spectrosc; 2011 May; 65(5):528-34. PubMed ID: 21513596 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization by surface-enhanced infrared absorption spectroscopy of silver nanoparticles formed on germanium substrates by electroless displacement. Yang J; Griffiths PR Anal Bioanal Chem; 2007 May; 388(1):109-19. PubMed ID: 17268775 [TBL] [Abstract][Full Text] [Related]
3. Surface-controlled electroless deposition method in the preparation of stacked silver nanoparticles on germanium for surface-enhanced infrared absorption measurements. Chang RL; Yang J Appl Spectrosc; 2010 Feb; 64(2):211-8. PubMed ID: 20149283 [TBL] [Abstract][Full Text] [Related]
4. Chemical reduction method for preparation of silver nanoparticles on a silver chloride substrate for application in surface-enhanced infrared optical sensors. Rao GP; Yang J Appl Spectrosc; 2010 Oct; 64(10):1094-9. PubMed ID: 20925978 [TBL] [Abstract][Full Text] [Related]
5. Characterization of thio compounds for a surface-controlled electroless deposition method in the preparation of silver nanoparticles on germanium for surface-enhanced infrared absorption measurements. Chang RL; Yang J Appl Spectrosc; 2010 Feb; 64(2):219-30. PubMed ID: 20149284 [TBL] [Abstract][Full Text] [Related]
6. Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Fang Y; Li Y; Xu H; Sun M Langmuir; 2010 Jun; 26(11):7737-46. PubMed ID: 20455558 [TBL] [Abstract][Full Text] [Related]
7. Influences of composition on electroless deposition of silver nanoparticles on glass substrates for surface-enhanced Raman scattering measurements. Cheng ML; Yang J Appl Spectrosc; 2008 Dec; 62(12):1384-94. PubMed ID: 19094399 [TBL] [Abstract][Full Text] [Related]
8. Effect of substrate on surface-enhanced Raman scattering of molecules adsorbed on immobilized silver nanoparticles. Zhou Q; Fan Q; Zhuang Y; Li Y; Zhao G; Zheng J J Phys Chem B; 2006 Jun; 110(24):12029-33. PubMed ID: 16800512 [TBL] [Abstract][Full Text] [Related]
9. Surface-enhanced infrared absorption (SEIRA) of adsorbates on copper nanoparticles synthesized by galvanic displacement. Fasasi A; Griffiths PR; Scudiero L Appl Spectrosc; 2011 Jul; 65(7):750-5. PubMed ID: 21740636 [TBL] [Abstract][Full Text] [Related]
10. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802 [TBL] [Abstract][Full Text] [Related]
11. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Ho CM; Yau SK; Lok CN; So MH; Che CM Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340 [TBL] [Abstract][Full Text] [Related]
12. Water-soluble germanium(0) nanocrystals: cell recognition and near-infrared photothermal conversion properties. Lambert TN; Andrews NL; Gerung H; Boyle TJ; Oliver JM; Wilson BS; Han SM Small; 2007 Apr; 3(4):691-9. PubMed ID: 17299826 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of nanoamorphous germanium and its transformation to nanocrystalline germanium. Dag O; Henderson EJ; Ozin GA Small; 2012 Mar; 8(6):921-9. PubMed ID: 22228493 [TBL] [Abstract][Full Text] [Related]
14. para-Mercaptobenzoic acid-modified silver nanoparticles as sensing media for the detection of ammonia in air based on infrared surface enhancement effect. Chang RL; Yang J Analyst; 2011 Jul; 136(14):2988-95. PubMed ID: 21647481 [TBL] [Abstract][Full Text] [Related]
15. Electroless reduction of silver chloride precipitates for the preparation of highly sensitive substrates for surface-enhanced infrared absorption (SEIRA) measurements. Rao GP; Yang J Appl Spectrosc; 2015 Jan; 69(1):37-44. PubMed ID: 25499246 [TBL] [Abstract][Full Text] [Related]
17. Probing silver nanoparticles during catalytic H2 evolution. Merga G; Cass LC; Chipman DM; Meisel D J Am Chem Soc; 2008 Jun; 130(22):7067-76. PubMed ID: 18461934 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685 [TBL] [Abstract][Full Text] [Related]
19. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Xu W; Kong JS; Chen P Phys Chem Chem Phys; 2009 Apr; 11(15):2767-78. PubMed ID: 19421535 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Lin CY; Yu CJ; Lin YH; Tseng WL Anal Chem; 2010 Aug; 82(16):6830-7. PubMed ID: 20704372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]