These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 21513598)

  • 1. Characterization of silicon dioxide films on a 4H-SiC Si(0001) face by fourier transform infrared (FT-IR) spectroscopy and cathodoluminescence spectroscopy.
    Yoshikawa M; Seki H; Inoue K; Matsuda K; Tanahashi Y; Sako H; Nanen Y; Kato M; Kimoto T
    Appl Spectrosc; 2011 May; 65(5):543-8. PubMed ID: 21513598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of inhomogeneity in silicon dioxide films on 4H-silicon carbide epitaxial substrate using a combination of Fourier transform infrared and cathodoluminescence spectroscopy.
    Yoshikawa M; Seki H; Inoue K; Nanen Y; Kimoto T
    Appl Spectrosc; 2014; 68(10):1176-80. PubMed ID: 25198339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal behavior of longitudinal optical phonon in silicon dioxide films on 4H-SiC bulk epitaxial substrate using Fourier transform infrared (FT-IR) spectroscopy.
    Yoshikawa M; Seki H; Yamane T; Nanen Y; Kato M; Kimoto T
    Appl Spectrosc; 2013 May; 67(5):542-5. PubMed ID: 23643043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Thermal Oxides on 4H-SiC Epitaxial Substrates Using Fourier-Transform Infrared Spectroscopy.
    Seki H; Yoshikawa M; Kobayashi T; Kimoto T; Ozaki Y
    Appl Spectrosc; 2017 May; 71(5):911-918. PubMed ID: 27407010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Thermal Oxides on 4H Silicon Carbide (4H-SiC) Epitaxial Substrate Using Fourier Transform Infrared Spectroscopy.
    Yoshikawa M; Seki H; Inoue K; Kobayashi T; Kimoto T
    Appl Spectrosc; 2015 Sep; ():. PubMed ID: 26337495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress Characterization of the Interface Between Thermal Oxide and the 4H-SiC Epitaxial Layer Using Near-Field Optical Raman Microscopy.
    Yoshikawa M; Fujita Y; Murakami M
    Appl Spectrosc; 2019 Oct; 73(10):1193-1200. PubMed ID: 31219330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress Characterization of 4H-SiC Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) using Raman Spectroscopy and the Finite Element Method.
    Yoshikawa M; Kosaka K; Seki H; Kimoto T
    Appl Spectrosc; 2016 Jul; 70(7):1209-13. PubMed ID: 27165155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic analysis on metal-oxide-semiconductor light-emitting diodes with buried Si nanocrystals and nano-pyramids in SiO(x) film.
    Lin GR
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1092-100. PubMed ID: 18468109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared characterization of interfacial Si-O bond formation on silanized flat SiO2/Si surfaces.
    Tian R; Seitz O; Li M; Hu WW; Chabal YJ; Gao J
    Langmuir; 2010 Apr; 26(7):4563-6. PubMed ID: 20180563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared and raman spectroscopic studies of optically transparent zirconia (ZrO2) films deposited by plasma-assisted reactive pulsed laser deposition.
    Zhang W; Gan J; Hu Z; Yu W; Li Q; Sun J; Xu N; Wu J; Ying Z
    Appl Spectrosc; 2011 May; 65(5):522-7. PubMed ID: 21513595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between temperature coefficient of elasticity and fourier transform infrared spectra of silicon dioxide films for surface acoustic wave devices.
    Matsuda S; Hara M; Miura M; Matsuda T; Ueda M; Satoh Y; Hashimoto KY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1684-7. PubMed ID: 21859588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of fluorine-doped silicon oxide for temperature compensation of radio frequency surface acoustic wave devices.
    Matsuda S; Hara M; Miura M; Matsuda T; Ueda M; Satoh Y; Hashimoto KY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):135-8. PubMed ID: 22297905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation.
    Cheng Q; Tam E; Xu S; Ostrikov KK
    Nanoscale; 2010 Apr; 2(4):594-600. PubMed ID: 20644764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of microstructured silicon wafers as internal reflection elements in attenuated total reflection Fourier transform infrared spectroscopy.
    Schumacher H; Künzelmann U; Vasilev B; Eichhorn KJ; Bartha JW
    Appl Spectrosc; 2010 Sep; 64(9):1022-7. PubMed ID: 20828439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids.
    Choi JK; Jang S; Sohn H; Jeong HD
    J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of Si and SiO(x) into diamond-like carbon films: impact on surface properties and osteoblast adhesion.
    Randeniya LK; Bendavid A; Martin PJ; Amin MS; Preston EW; Magdon Ismail FS; Coe S
    Acta Biomater; 2009 Jun; 5(5):1791-7. PubMed ID: 19233753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite material films: optical properties and applications.
    Abeles B; Gittleman JI
    Appl Opt; 1976 Oct; 15(10):2328-32. PubMed ID: 20165394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and 1/f noise of boron doped polymorphous silicon films.
    Li SB; Wu ZM; Jiang YD; Li W; Liao NM; Yu JS
    Nanotechnology; 2008 Feb; 19(8):085706. PubMed ID: 21730737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds.
    Nakamura Y; Miwa T; Ichikawa M
    Nanotechnology; 2011 Jul; 22(26):265301. PubMed ID: 21576805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of the in situ Fourier transform infrared absorption and emission spectrum of gas-phase SiO (Deltav = 1 and 2) produced in Si-N-O fiber growth.
    Martin PA; Daum R; Beil A; Vogt U; Vital A; Graehlert W; Leparoux M; Hopfe V
    Appl Spectrosc; 2004 May; 58(5):543-51. PubMed ID: 15165330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.