These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21513980)

  • 21. Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment.
    Macherius A; Eggen T; Lorenz W; Moeder M; Ondruschka J; Reemtsma T
    Environ Sci Technol; 2012 Oct; 46(19):10797-804. PubMed ID: 22989227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth conditions impact 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) accumulation by Cucurbita pepo.
    Kelsey JW; Colino A; Koberle M; White JC
    Int J Phytoremediation; 2006; 8(3):261-71. PubMed ID: 17120529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ecological risk assessment for triclosan in the terrestrial environment.
    Reiss R; Lewis G; Griffin J
    Environ Toxicol Chem; 2009 Jul; 28(7):1546-56. PubMed ID: 19228078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.
    Wu C; Spongberg AL; Witter JD; Sridhar BB
    Ecotoxicol Environ Saf; 2012 Nov; 85():104-9. PubMed ID: 22921256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.
    Aryal N; Reinhold D
    Int J Phytoremediation; 2013; 15(4):330-42. PubMed ID: 23487999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxicity and bioaccumulation of biosolids-borne triclosan in terrestrial organisms.
    Pannu MW; O'Connor GA; Toor GS
    Environ Toxicol Chem; 2012 Mar; 31(3):646-53. PubMed ID: 22180230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioconcentration of triclosan and methyl-triclosan in marine mussels (Mytilus galloprovincialis) under laboratory conditions and in metropolitan waters of Gulf St Vincent, South Australia.
    Kookana RS; Shareef A; Fernandes MB; Hoare S; Gaylard S; Kumar A
    Mar Pollut Bull; 2013 Sep; 74(1):66-72. PubMed ID: 23920105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological removal of pharmaceuticals and personal care products during laboratory soil aquifer treatment simulation with different primary substrate concentrations.
    Onesios KM; Bouwer EJ
    Water Res; 2012 May; 46(7):2365-75. PubMed ID: 22374299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fate of pharmaceuticals in soil after application of STPs products: Influence of physicochemical properties and modelling approach.
    García-Santiago X; Garrido JM; Lema JM; Franco-Uría A
    Chemosphere; 2017 Sep; 182():406-415. PubMed ID: 28511136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake, translocation and accumulation of
    Nie E; Chen Y; Gao X; Chen Y; Ye Q; Wang H
    Sci Total Environ; 2020 Jul; 724():138165. PubMed ID: 32247135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicity and bioaccumulation of biosolids-borne triclosan in food crops.
    Pannu MW; Toor GS; O'Connor GA; Wilson PC
    Environ Toxicol Chem; 2012 Sep; 31(9):2130-7. PubMed ID: 22761010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triclocarban, triclosan and its transformation product methyl triclosan in native earthworm species four years after a commercial-scale biosolids application.
    Macherius A; Lapen DR; Reemtsma T; Römbke J; Topp E; Coors A
    Sci Total Environ; 2014 Feb; 472():235-8. PubMed ID: 24291564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.
    Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P
    Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Terrestrial ecotoxicological effects of the antimicrobial agent triclosan.
    Liu F; Ying GG; Yang LH; Zhou QX
    Ecotoxicol Environ Saf; 2009 Jan; 72(1):86-92. PubMed ID: 18706695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Root Uptake of Pharmaceuticals and Personal Care Product Ingredients.
    Miller EL; Nason SL; Karthikeyan KG; Pedersen JA
    Environ Sci Technol; 2016 Jan; 50(2):525-41. PubMed ID: 26619126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Level and fate of etoxazole in green bean (Phaseolus vulgaris).
    Malhat F; Hassan A
    Bull Environ Contam Toxicol; 2011 Aug; 87(2):190-3. PubMed ID: 21667235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors controlling the biodegradation of 17beta-estradiol, estrone and 17alpha-ethinylestradiol in different natural soils.
    Stumpe B; Marschner B
    Chemosphere; 2009 Jan; 74(4):556-62. PubMed ID: 18990423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of uptake and elimination of 17α-ethinylestradiol in male goldfish (Carassius auratus).
    Al-Ansari AM; Atkinson SK; Doyle JR; Trudeau VL; Blais JM
    Aquat Toxicol; 2013 May; 132-133():134-40. PubMed ID: 23500082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.
    He Y; Nie E; Li C; Ye Q; Wang H
    Environ Pollut; 2017 Jan; 220(Pt A):400-406. PubMed ID: 27692886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential use of the plant antioxidant network for environmental exposure assessment of heavy metals in soils.
    Meers E; Ruttens A; Geebelen W; Vangronsveld J; Samson R; Vanbroekhoven K; Vandegehuchte M; Diels L; Tack FM
    Environ Monit Assess; 2006 Sep; 120(1-3):243-67. PubMed ID: 16897526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.