BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 21514034)

  • 1. Effect of osteogenesis imperfecta mutations on free energy of collagen model peptides: a molecular dynamics simulation.
    Lee KH; Kuczera K; Holl MM
    Biophys Chem; 2011 Jul; 156(2-3):146-52. PubMed ID: 21514034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The severity of osteogenesis imperfecta: a comparison to the relative free energy differences of collagen model peptides.
    Lee KH; Kuczera K; Banaszak Holl MM
    Biopolymers; 2011 Mar; 95(3):182-93. PubMed ID: 20945334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy simulation to investigate the effect of amino acid sequence environment on the severity of osteogenesis imperfecta by glycine mutations in collagen.
    Lee KH; Holl MM
    Biopolymers; 2011 Jun; 95(6):401-9. PubMed ID: 21280025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severity of osteogenesis imperfecta and structure of a collagen-like peptide modeling a lethal mutation site.
    Radmer RJ; Klein TE
    Biochemistry; 2004 May; 43(18):5314-23. PubMed ID: 15122897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine.
    Beck K; Chan VC; Shenoy N; Kirkpatrick A; Ramshaw JA; Brodsky B
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4273-8. PubMed ID: 10725403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations.
    Bodian DL; Madhan B; Brodsky B; Klein TE
    Biochemistry; 2008 May; 47(19):5424-32. PubMed ID: 18412368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I.
    Gauba V; Hartgerink JD
    J Am Chem Soc; 2008 Jun; 130(23):7509-15. PubMed ID: 18481852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone turnover and type I collagen C-telopeptide isomerization in adult osteogenesis imperfecta: associations with collagen gene mutations.
    Garnero P; Schott AM; Prockop D; Chevrel G
    Bone; 2009 Mar; 44(3):461-6. PubMed ID: 19071236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease.
    Liu X; Kim S; Dai QH; Brodsky B; Baum J
    Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical thermodynamics of the collagen triple-helix/coil transition. Free energies for amino acid substitutions within the triple-helix.
    Doig AJ
    J Phys Chem B; 2008 Nov; 112(47):15029-33. PubMed ID: 18975885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen.
    Punitha V; Raman SS; Parthasarathi R; Subramanian V; Rao JR; Nair BU; Ramasami T
    J Phys Chem B; 2009 Jul; 113(26):8983-92. PubMed ID: 19518060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the COL1A2 gene of type I collagen that result in nonlethal forms of osteogenesis imperfecta.
    Wenstrup RJ; Lever LW; Phillips CL; Quarles LD
    Am J Med Genet; 1993 Jan; 45(2):228-32. PubMed ID: 8456807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigations of structural changes resulting from point mutations in a collagen-like peptide.
    Klein TE; Huang CC
    Biopolymers; 1999 Feb; 49(2):167-83. PubMed ID: 10070265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen.
    Bächinger HP; Morris NP; Davis JM
    Am J Med Genet; 1993 Jan; 45(2):152-62. PubMed ID: 8456797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis imperfecta collagen-like peptides: self-assembly and mineralization on surfaces.
    Xu P; Huang J; Cebe P; Kaplan DL
    Biomacromolecules; 2008 Jun; 9(6):1551-7. PubMed ID: 18498187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of correlation between the type of COL1A1 or COL1A2 mutation and hearing loss in osteogenesis imperfecta patients.
    Hartikka H; Kuurila K; Körkkö J; Kaitila I; Grénman R; Pynnönen S; Hyland JC; Ala-Kokko L
    Hum Mutat; 2004 Aug; 24(2):147-54. PubMed ID: 15241796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computed free energy differences between point mutations in a collagen-like peptide.
    Mooney SD; Huang CC; Kollman PA; Klein TE
    Biopolymers; 2001 Mar; 58(3):347-53. PubMed ID: 11169394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenesis imperfecta mutations may probe vital functional domains (e.g. proteoglycan binding sites) of type 1 collagen fibrils.
    Scott JE; Tenni R
    Cell Biochem Funct; 1997 Dec; 15(4):283-6. PubMed ID: 9415975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.