These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21514046)

  • 1. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant.
    Khan S; Kazi TG; Kolachi NF; Baig JA; Afridi HI; Shah AQ; Kumar S; Shah F
    J Hazard Mater; 2011 Jun; 190(1-3):738-43. PubMed ID: 21514046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine.
    Panichev N; Mandiwana K; Moema D; Molatlhegi R; Ngobeni P
    J Hazard Mater; 2006 Sep; 137(2):649-53. PubMed ID: 16621278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia.
    Marković M; Cupać S; Durović R; Milinović J; Kljajić P
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):341-51. PubMed ID: 19603130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation of vanadium in coal mining, industrial, and agricultural soil samples using different extractants and heating systems.
    Khan S; Kazi TG; Afridi HI; Kolachi NF; Ullah N; Dev K
    J AOAC Int; 2013; 96(1):186-9. PubMed ID: 23513976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry.
    Mandiwana KL; Panichev N
    J Hazard Mater; 2010 Jun; 178(1-3):1106-8. PubMed ID: 20144504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site.
    Qian Y; Gallagher FJ; Feng H; Wu M; Zhu Q
    Sci Total Environ; 2014 Apr; 476-477():696-704. PubMed ID: 24518306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract.
    Intawongse M; Dean JR
    Food Addit Contam; 2006 Jan; 23(1):36-48. PubMed ID: 16393813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Procedures of trophic chain samples preparation for determination of triazines by HPLC and metals by ICP-AES methods.
    Baranowska I; Barchańska H; Pacak E
    Environ Pollut; 2006 Sep; 143(2):206-11. PubMed ID: 16442680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China.
    Li XW; Xie YF; Li CL; Zhao HN; Zhao H; Wang N; Wang JF
    Sci Total Environ; 2014 Jan; 468-469():258-64. PubMed ID: 24041599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Level of cadmium and lead in vegetables, fruit, cereal and soil from areas differing in the degree of industrial pollution and from greenhouses].
    Szymczak J; Ilow R; Regulska-Ilow B
    Rocz Panstw Zakl Hig; 1993; 44(4):331-46. PubMed ID: 7973402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater.
    Nayek S; Gupta S; Saha RN
    J Hazard Mater; 2010 Jun; 178(1-3):588-95. PubMed ID: 20176438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead in grass in the Scottish uplands: deposition or uptake?
    Bacon JR; Hewitt IJ; Cooper P
    J Environ Monit; 2005 Aug; 7(8):785-91. PubMed ID: 16049579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human exposure to mercury in the vicinity of chlor-alkali plant.
    Gibicar D; Horvat M; Logar M; Fajon V; Falnoga I; Ferrara R; Lanzillotta E; Ceccarini C; Mazzolai B; Denby B; Pacyna J
    Environ Res; 2009 May; 109(4):355-67. PubMed ID: 19286175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge.
    Nabulo G; Black CR; Young SD
    Environ Pollut; 2011 Feb; 159(2):368-76. PubMed ID: 21129831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study.
    Bañuelos GS; Lin ZQ
    Ecotoxicol Environ Saf; 2005 Nov; 62(3):309-16. PubMed ID: 16216624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation analysis of plants in the determination of V(V) by ETAAS.
    Mandiwana KL; Panichev N
    Talanta; 2006 Dec; 70(5):1153-6. PubMed ID: 18970893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice.
    Roychowdhury T
    Food Chem Toxicol; 2008 Aug; 46(8):2856-64. PubMed ID: 18602205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions.
    Wang XP; Shan XQ; Zhang SZ; Wen B
    Chemosphere; 2004 May; 55(6):811-22. PubMed ID: 15041285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study.
    Das HK; Mitra AK; Sengupta PK; Hossain A; Islam F; Rabbani GH
    Environ Int; 2004 May; 30(3):383-7. PubMed ID: 14987870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.