These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 21514284)

  • 1. Oxysterols formation as a reflection of biochemical pathways: summary of in vitro and in vivo studies.
    Vaya J; Szuchman A; Tavori H; Aluf Y
    Chem Phys Lipids; 2011 Sep; 164(6):438-42. PubMed ID: 21514284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxysterols: novel biologic roles for the 21st century.
    Javitt NB
    Steroids; 2008 Feb; 73(2):149-57. PubMed ID: 18068744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways of cholesterol oxidation via non-enzymatic mechanisms.
    Iuliano L
    Chem Phys Lipids; 2011 Sep; 164(6):457-68. PubMed ID: 21703250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane and protein interactions of oxysterols.
    Massey JB
    Curr Opin Lipidol; 2006 Jun; 17(3):296-301. PubMed ID: 16680036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trojan horse-like behavior of a biologically representative mixture of oxysterols.
    Leonarduzzi G; Biasi F; Chiarpotto E; Poli G
    Mol Aspects Med; 2004; 25(1-2):155-67. PubMed ID: 15051324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic oxysterols inhibit the adverse effects of oxidative stress on osteogenic differentiation of marrow stromal cells.
    Shouhed D; Kha HT; Richardson JA; Amantea CM; Hahn TJ; Parhami F
    J Cell Biochem; 2005 Aug; 95(6):1276-83. PubMed ID: 15880703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases.
    Miyoshi N; Iuliano L; Tomono S; Ohshima H
    Biochem Biophys Res Commun; 2014 Apr; 446(3):702-8. PubMed ID: 24412245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxysterols in biological systems: sources, metabolism and pathophysiological relevance.
    van Reyk DM; Brown AJ; Hult'en LM; Dean RT; Jessup W
    Redox Rep; 2006; 11(6):255-62. PubMed ID: 17207307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxic effects of oxysterols produced during ozonolysis of cholesterol in murine GT1-7 hypothalamic neurons.
    Sathishkumar K; Murthy SN; Uppu RM
    Free Radic Res; 2007 Jan; 41(1):82-8. PubMed ID: 17164181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation as a crucial reaction for cholesterol to induce tissue degeneration: CD36 overexpression in human promonocytic cells treated with a biologically relevant oxysterol mixture.
    Leonarduzzi G; Gamba P; Gargiulo S; Sottero B; Kadl A; Biasi F; Chiarpotto E; Leitinger N; Vendemiale G; Serviddio G; Poli G
    Aging Cell; 2008 Jun; 7(3):375-82. PubMed ID: 18331615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric detection of cholesterol oxidation in bovine sperm.
    Brouwers JF; Boerke A; Silva PF; Garcia-Gil N; van Gestel RA; Helms JB; van de Lest CH; Gadella BM
    Biol Reprod; 2011 Jul; 85(1):128-36. PubMed ID: 21415139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [From cholesterol to oxysterols. Current data].
    Luu B
    C R Seances Soc Biol Fil; 1995; 189(5):827-37. PubMed ID: 8673629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel designed probes for the characterization of oxidative stress in biological fluids, cells, and tissues.
    Vaya J
    Methods Mol Biol; 2008; 477():3-13. PubMed ID: 19082934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells.
    Joffre C; Leclère L; Buteau B; Martine L; Cabaret S; Malvitte L; Acar N; Lizard G; Bron A; Creuzot-Garcher C; Bretillon L
    Curr Eye Res; 2007 Mar; 32(3):271-80. PubMed ID: 17453947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxysterols: friends, foes, or just fellow passengers?
    Björkhem I; Diczfalusy U
    Arterioscler Thromb Vasc Biol; 2002 May; 22(5):734-42. PubMed ID: 12006384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes.
    Mintzer E; Charles G; Gordon S
    Chem Phys Lipids; 2010 Jun; 163(6):586-93. PubMed ID: 20471966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance and mechanism of oxysterol stereospecifity in coronary artery disease.
    Rimner A; Al Makdessi S; Sweidan H; Wischhusen J; Rabenstein B; Shatat K; Mayer P; Spyridopoulos I
    Free Radic Biol Med; 2005 Feb; 38(4):535-44. PubMed ID: 15649656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol oxidation products and their biological importance.
    Kulig W; Cwiklik L; Jurkiewicz P; Rog T; Vattulainen I
    Chem Phys Lipids; 2016 Sep; 199():144-160. PubMed ID: 26956952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis.
    Vejux A; Lizard G
    Mol Aspects Med; 2009 Jun; 30(3):153-70. PubMed ID: 19248805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of oxidative stress in blood from diabetic vs. hypercholesterolaemic patients, using a novel synthesized marker.
    Szuchman A; Aviram M; Musa R; Khatib S; Vaya J
    Biomarkers; 2008 Feb; 13(1):119-31. PubMed ID: 17852078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.