These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21514445)

  • 1. Protein phosphatase 2A catalytic subunit α (PP2Acα) maintains survival of committed erythroid cells in fetal liver erythropoiesis through the STAT5 pathway.
    Chen W; Gu P; Jiang X; Ruan HB; Li C; Gao X
    Am J Pathol; 2011 May; 178(5):2333-43. PubMed ID: 21514445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1.
    Kerenyi MA; Grebien F; Gehart H; Schifrer M; Artaker M; Kovacic B; Beug H; Moriggl R; Müllner EW
    Blood; 2008 Nov; 112(9):3878-88. PubMed ID: 18694996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways.
    Tong W; Zhang J; Lodish HF
    Blood; 2005 Jun; 105(12):4604-12. PubMed ID: 15705783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epo-induced erythroid maturation is dependent on Plcγ1 signaling.
    Schnöder TM; Arreba-Tutusaus P; Griehl I; Bullinger L; Buschbeck M; Lane SW; Döhner K; Plass C; Lipka DB; Heidel FH; Fischer T
    Cell Death Differ; 2015 Jun; 22(6):974-85. PubMed ID: 25394487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphatase 2A regulatory subunit B56β modulates erythroid differentiation.
    Wu J; Wang J; Zeng X; Chen Y; Xia J; Wang S; Huang Z; Chen W; Shen Z
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1179-84. PubMed ID: 27544028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of a flippase subunit
    Yang F; Huang Y; Chen X; Liu L; Liao D; Zhang H; Huang G; Liu W; Zhu X; Wang W; Lobo CA; Yazdanbakhsh K; An X; Ju Z
    Haematologica; 2019 Oct; 104(10):1984-1994. PubMed ID: 30819915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression.
    Chida D; Miura O; Yoshimura A; Miyajima A
    Blood; 1999 Mar; 93(5):1567-78. PubMed ID: 10029585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) stimulates primitive and definitive erythropoiesis in mouse embryos expressing hGM-CSF receptors but not erythropoietin receptors.
    Hisakawa H; Sugiyama D; Nishijima I; Xu MJ; Wu H; Nakao K; Watanabe S; Katsuki M; Asano S; Arai K; Nakahata T; Tsuji K
    Blood; 2001 Dec; 98(13):3618-25. PubMed ID: 11739165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression.
    Vassen L; Beauchemin H; Lemsaddek W; Krongold J; Trudel M; Möröy T
    PLoS One; 2014; 9(5):e96636. PubMed ID: 24800817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling.
    Wood AD; Chen E; Donaldson IJ; Hattangadi S; Burke KA; Dawson MA; Miranda-Saavedra D; Lodish HF; Green AR; Göttgens B
    Blood; 2009 Aug; 114(9):1820-30. PubMed ID: 19571317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STAT5 acts as a repressor to regulate early embryonic erythropoiesis.
    Schmerer M; Torregroza I; Pascal A; Umbhauer M; Evans T
    Blood; 2006 Nov; 108(9):2989-97. PubMed ID: 16835375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo.
    McGrath KE; Frame JM; Fromm GJ; Koniski AD; Kingsley PD; Little J; Bulger M; Palis J
    Blood; 2011 Apr; 117(17):4600-8. PubMed ID: 21378272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical requirement of VEGF-C in transition to fetal erythropoiesis.
    Fang S; Nurmi H; Heinolainen K; Chen S; Salminen E; Saharinen P; Mikkola HK; Alitalo K
    Blood; 2016 Aug; 128(5):710-20. PubMed ID: 27343251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatocyte-specific ablation of PP2A catalytic subunit α attenuates liver fibrosis progression via TGF-β1/Smad signaling.
    Lu N; Liu Y; Tang A; Chen L; Miao D; Yuan X
    Biomed Res Int; 2015; 2015():794862. PubMed ID: 25710025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal protein L11- and retinol dehydrogenase 11-induced erythroid proliferation without erythropoietin in UT-7/Epo erythroleukemic cells.
    Kummalue T; Inoue T; Miura Y; Narusawa M; Inoue H; Komatsu N; Wanachiwanawin W; Sugiyama D; Tani K
    Exp Hematol; 2015 May; 43(5):414-423.e1. PubMed ID: 25829192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythropoietin induces sustained phosphorylation of STAT5 in primitive but not definitive erythrocytes generated from mouse embryonic stem cells.
    Tsuji-Takayama K; Otani T; Inoue T; Nakamura S; Motoda R; Kibata M; Orita K
    Exp Hematol; 2006 Oct; 34(10):1323-32. PubMed ID: 16982325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global loss of leucine carboxyl methyltransferase-1 causes severe defects in fetal liver hematopoiesis.
    Lee JA; Wang Z; Sambo D; Bunting KD; Pallas DC
    J Biol Chem; 2018 Jun; 293(25):9636-9650. PubMed ID: 29735529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zfat Is Indispensable for the Development of Erythroid Cells in the Fetal Liver.
    Doi K; Tsunoda T; Koyanagi M; Tanaka Y; Yamano S; Fujikane A; Nishi K; Ishikura S; Shirasawa S
    Anticancer Res; 2019 Aug; 39(8):4495-4502. PubMed ID: 31366551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythroid development in the mammalian embryo.
    Baron MH; Vacaru A; Nieves J
    Blood Cells Mol Dis; 2013 Dec; 51(4):213-9. PubMed ID: 23932234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloid-Specific Gene Deletion of Protein Phosphatase 2A Magnifies MyD88- and TRIF-Dependent Inflammation following Endotoxin Challenge.
    Sun L; Pham TT; Cornell TT; McDonough KL; McHugh WM; Blatt NB; Dahmer MK; Shanley TP
    J Immunol; 2017 Jan; 198(1):404-416. PubMed ID: 27872207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.