These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21514447)
21. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Yang Y; Lu Y; Wang L; Mizokami A; Keller ET; Zhang J; Fu J Oncol Rep; 2016 Jul; 36(1):559-66. PubMed ID: 27175797 [TBL] [Abstract][Full Text] [Related]
22. Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. Wei S; Chu PC; Chuang HC; Hung WC; Kulp SK; Chen CS PLoS One; 2012; 7(10):e47298. PubMed ID: 23071779 [TBL] [Abstract][Full Text] [Related]
23. Bone-induced c-kit expression in prostate cancer: a driver of intraosseous tumor growth. Mainetti LE; Zhe X; Diedrich J; Saliganan AD; Cho WJ; Cher ML; Heath E; Fridman R; Kim HR; Bonfil RD Int J Cancer; 2015 Jan; 136(1):11-20. PubMed ID: 24798488 [TBL] [Abstract][Full Text] [Related]
24. Skp2 is oncogenic and overexpressed in human cancers. Gstaiger M; Jordan R; Lim M; Catzavelos C; Mestan J; Slingerland J; Krek W Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5043-8. PubMed ID: 11309491 [TBL] [Abstract][Full Text] [Related]
25. Skp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Hung WC; Tseng WL; Shiea J; Chang HC Cancer Lett; 2010 Feb; 288(2):156-61. PubMed ID: 19625121 [TBL] [Abstract][Full Text] [Related]
26. Flavokawain B targets protein neddylation for enhancing the anti-prostate cancer effect of Bortezomib via Skp2 degradation. Li X; Pham V; Tippin M; Fu D; Rendon R; Song L; Uchio E; Hoang BH; Zi X Cell Commun Signal; 2019 Mar; 17(1):25. PubMed ID: 30885218 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of proliferation of rabbit lens epithelial cells by S-phase kinase-interacting protein 2 targeting small interfering RNA. Su Y; Wang F; Yan Q; Teng Y; Cui H Mol Vis; 2010 May; 16():907-15. PubMed ID: 20508867 [TBL] [Abstract][Full Text] [Related]
29. Increased expression of SKP2 and phospho-MAPK/ERK1/2 and decreased expression of p27 during tumor progression of cervical neoplasms. Chen TP; Chen CM; Chang HW; Wang JS; Chang WC; Hsu SI; Cho CL Gynecol Oncol; 2007 Mar; 104(3):516-23. PubMed ID: 17079005 [TBL] [Abstract][Full Text] [Related]
30. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Manda KR; Tripathi P; Hsi AC; Ning J; Ruzinova MB; Liapis H; Bailey M; Zhang H; Maher CA; Humphrey PA; Andriole GL; Ding L; You Z; Chen F Oncogene; 2016 Jun; 35(25):3282-92. PubMed ID: 26477312 [TBL] [Abstract][Full Text] [Related]
31. SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Delogu S; Wang C; Cigliano A; Utpatel K; Sini M; Longerich T; Waldburger N; Breuhahn K; Jiang L; Ribback S; Dombrowski F; Evert M; Chen X; Calvisi DF Oncotarget; 2015 Feb; 6(4):2222-34. PubMed ID: 25537506 [TBL] [Abstract][Full Text] [Related]
32. STAT1 represses Skp2 gene transcription to promote p27Kip1 stabilization in Ras-transformed cells. Wang S; Raven JF; Koromilas AE Mol Cancer Res; 2010 May; 8(5):798-805. PubMed ID: 20407011 [TBL] [Abstract][Full Text] [Related]
33. A novel selenonucleoside suppresses tumor growth by targeting Skp2 degradation in paclitaxel-resistant prostate cancer. Byun WS; Jin M; Yu J; Kim WK; Song J; Chung HJ; Jeong LS; Lee SK Biochem Pharmacol; 2018 Dec; 158():84-94. PubMed ID: 30292755 [TBL] [Abstract][Full Text] [Related]
34. Periostin: a promising target of therapeutical intervention for prostate cancer. Sun C; Zhao X; Xu K; Gong J; Liu W; Ding W; Gou Y; Xia G; Ding Q J Transl Med; 2011 Jun; 9():99. PubMed ID: 21714934 [TBL] [Abstract][Full Text] [Related]
35. EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Huang HC; Way TD; Lin CL; Lin JK Endocrinology; 2008 Dec; 149(12):5972-83. PubMed ID: 18719023 [TBL] [Abstract][Full Text] [Related]
36. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. Zuo T; Liu R; Zhang H; Chang X; Liu Y; Wang L; Zheng P; Liu Y J Clin Invest; 2007 Dec; 117(12):3765-73. PubMed ID: 18008005 [TBL] [Abstract][Full Text] [Related]
37. Constitutive activation of MAPK/ERK inhibits prostate cancer cell proliferation through upregulation of BRCA2. Moro L; Arbini AA; Marra E; Greco M Int J Oncol; 2007 Jan; 30(1):217-24. PubMed ID: 17143532 [TBL] [Abstract][Full Text] [Related]
38. Lysosome-dependent FOXA1 ubiquitination contributes to luminal lineage of advanced prostate cancer. Celada SI; Li G; Celada LJ; Lu W; Kanagasabai T; Feng W; Cao Z; Salsabeel N; Mao N; Brown LK; Mark ZA; Izban MG; Ballard BR; Zhou X; Adunyah SE; Matusik RJ; Wang X; Chen Z Mol Oncol; 2023 Oct; 17(10):2126-2146. PubMed ID: 37491794 [TBL] [Abstract][Full Text] [Related]
39. [Effect of downregulation of prostate cancer antigen-1 expression on malignant biological behavior of prostate cancer LNCaP cells]. Liu BQ; Wang YK; Wu YD; Wei JX; Li X Zhonghua Zhong Liu Za Zhi; 2013 Nov; 35(11):828-32. PubMed ID: 24447480 [TBL] [Abstract][Full Text] [Related]
40. Skp2 regulates non-small cell lung cancer cell growth by Meg3 and miR-3163. Su L; Han D; Wu J; Huo X Tumour Biol; 2016 Mar; 37(3):3925-31. PubMed ID: 26482610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]