These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 21515217)

  • 1. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.
    Bastian S; Liu X; Meyerowitz JT; Snow CD; Chen MM; Arnold FH
    Metab Eng; 2011 May; 13(3):345-52. PubMed ID: 21515217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production.
    Shi A; Zhu X; Lu J; Zhang X; Ma Y
    Metab Eng; 2013 Mar; 16():1-10. PubMed ID: 23246519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway.
    Liu Z; Liu P; Xiao D; Zhang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):851-60. PubMed ID: 26946319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.
    Brinkmann-Chen S; Flock T; Cahn JK; Snow CD; Brustad EM; McIntosh JA; Meinhold P; Zhang L; Arnold FH
    Proc Natl Acad Sci U S A; 2013 Jul; 110(27):10946-51. PubMed ID: 23776225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and optimization of a novel thermo- and solvent stable ketol-acid reductoisomerase for cell free isobutanol biosynthesis.
    Reiße S; Garbe D; Brück T
    Biochimie; 2015 Jan; 108():76-84. PubMed ID: 25446654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius.
    Chen CY; Ko TP; Lin KF; Lin BL; Huang CH; Chiang CH; Horng JC
    Sci Rep; 2018 May; 8(1):7176. PubMed ID: 29739976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.
    Qi H; Li S; Zhao S; Huang D; Xia M; Wen J
    PLoS One; 2014; 9(4):e93815. PubMed ID: 24705866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes.
    Atsumi S; Wu TY; Eckl EM; Hawkins SD; Buelter T; Liao JC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):651-7. PubMed ID: 19609521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.
    Trinh CT; Li J; Blanch HW; Clark DS
    Appl Environ Microbiol; 2011 Jul; 77(14):4894-904. PubMed ID: 21642415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the valine biosynthetic pathway to convert glucose into isobutanol.
    Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae.
    Acedos MG; de la Torre I; Santos VE; García-Ochoa F; García JL; Galán B
    Biotechnol Biofuels; 2021 Jan; 14(1):8. PubMed ID: 33407735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli.
    Zhou L; Zhu Y; Yuan Z; Liu G; Sun Z; Du S; Liu H; Li Y; Liu H; Zhou Z
    Appl Environ Microbiol; 2022 Sep; 88(17):e0097622. PubMed ID: 35980178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.
    Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A
    Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate.
    Ghosh IN; Martien J; Hebert AS; Zhang Y; Coon JJ; Amador-Noguez D; Landick R
    Metab Eng; 2019 Mar; 52():324-340. PubMed ID: 30594629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
    Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T
    Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli.
    Liang S; Chen H; Liu J; Wen J
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):187-199. PubMed ID: 29380153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionary strategy for isobutanol production strain development in Escherichia coli.
    Smith KM; Liao JC
    Metab Eng; 2011 Nov; 13(6):674-81. PubMed ID: 21911074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.