BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21515240)

  • 21. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol.
    Björkbom A; Róg T; Kaszuba K; Kurita M; Yamaguchi S; Lönnfors M; Nyholm TK; Vattulainen I; Katsumura S; Slotte JP
    Biophys J; 2010 Nov; 99(10):3300-8. PubMed ID: 21081078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermotropic behavior and lateral distribution of very long chain sphingolipids.
    Björkqvist YJ; Brewer J; Bagatolli LA; Slotte JP; Westerlund B
    Biochim Biophys Acta; 2009 Jun; 1788(6):1310-20. PubMed ID: 19272355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelin, or phosphatidylcholine.
    Nyholm TK; Nylund M; Slotte JP
    Biophys J; 2003 May; 84(5):3138-46. PubMed ID: 12719243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains.
    Nyholm TKM; Engberg O; Hautala V; Tsuchikawa H; Lin KL; Murata M; Slotte JP
    Biophys J; 2019 Nov; 117(9):1577-1588. PubMed ID: 31610877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure.
    Shahedi V; Orädd G; Lindblom G
    Biophys J; 2006 Oct; 91(7):2501-7. PubMed ID: 16829566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sphingolipids and the formation of sterol-enriched ordered membrane domains.
    Ramstedt B; Slotte JP
    Biochim Biophys Acta; 2006 Dec; 1758(12):1945-56. PubMed ID: 16901461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes.
    Galván-Hernández A; Kobayashi N; Hernández-Cobos J; Antillón A; Nakabayashi S; Ortega-Blake I
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183101. PubMed ID: 31672540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy.
    Guyomarc'h F; Chen M; Et-Thakafy O; Zou S; Lopez C
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):949-958. PubMed ID: 28215536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphingomyelin Acyl Chains Influence the Formation of Sphingomyelin- and Cholesterol-Enriched Domains.
    Engberg O; Lin KL; Hautala V; Slotte JP; Nyholm TKM
    Biophys J; 2020 Sep; 119(5):913-923. PubMed ID: 32755561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sterol structure and sphingomyelin acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes.
    Li XM; Momsen MM; Brockman HL; Brown RE
    Biophys J; 2003 Dec; 85(6):3788-801. PubMed ID: 14645069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes.
    Térová B; Petersen G; Hansen HS; Slotte JP
    Biochim Biophys Acta; 2005 Aug; 1715(1):49-56. PubMed ID: 16087152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sphingomyelin/phosphatidylcholine/cholesterol monolayers--analysis of the interactions in model membranes and Brewster Angle Microscopy experiments.
    Wydro P
    Colloids Surf B Biointerfaces; 2012 May; 93():174-9. PubMed ID: 22277747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols.
    Jaikishan S; Björkbom A; Slotte JP
    Biochim Biophys Acta; 2010 Aug; 1798(8):1615-22. PubMed ID: 20359462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers.
    Nyström JH; Lönnfors M; Nyholm TK
    Biophys J; 2010 Jul; 99(2):526-33. PubMed ID: 20643071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization.
    Halling KK; Slotte JP
    Biochim Biophys Acta; 2004 Aug; 1664(2):161-71. PubMed ID: 15328048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miscibility of acyl-chain defined phosphatidylcholines with N-palmitoyl sphingomyelin in bilayer membranes.
    Térová B; Slotte JP; Nyholm TK
    Biochim Biophys Acta; 2004 Dec; 1667(2):182-9. PubMed ID: 15581854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study.
    Filipe HA; Bowman D; Palmeira T; Cardoso RM; Loura LM; Moreno MJ
    Phys Chem Chem Phys; 2015 Nov; 17(41):27534-47. PubMed ID: 26426766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane properties of D-erythro-N-acyl sphingomyelins and their corresponding dihydro species.
    Kuikka M; Ramstedt B; Ohvo-Rekilä H; Tuuf J; Slotte JP
    Biophys J; 2001 May; 80(5):2327-37. PubMed ID: 11325733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of chain length and unsaturation on sphingomyelin bilayers.
    Niemelä PS; Hyvönen MT; Vattulainen I
    Biophys J; 2006 Feb; 90(3):851-63. PubMed ID: 16284257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.