These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21515346)

  • 21. Influence of polyol and oil concentration in cosmetic products on skin moisturization and skin surface roughness.
    Kim E; Nam GW; Kim S; Lee H; Moon S; Chang I
    Skin Res Technol; 2007 Nov; 13(4):417-24. PubMed ID: 17908194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic analysis of alcohol effect on thermal stability of proteins.
    Miyawaki O; Tatsuno M
    J Biosci Bioeng; 2011 Feb; 111(2):198-203. PubMed ID: 20947421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values.
    Haque I; Singh R; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2005 Aug; 117(1):1-12. PubMed ID: 15905020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems.
    Liu X; Zhou P; Tran A; Labuza TP
    J Agric Food Chem; 2009 Mar; 57(6):2339-45. PubMed ID: 19231894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability of proteins in the presence of polyols estimated from their guanidinium chloride-induced transition curves at different pH values and 25 degrees C.
    Haque I; Islam A; Singh R; Moosavi-Movahedi AA; Ahmad F
    Biophys Chem; 2006 Feb; 119(3):224-33. PubMed ID: 16226834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions.
    Gekko K
    J Biochem; 1981 Dec; 90(6):1633-41. PubMed ID: 7333999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaled interfacial activity of proteins at a hydrophobic solid/aqueous-buffer interface.
    Krishnan A; Liu YH; Cha P; Allara D; Vogler EA
    J Biomed Mater Res A; 2005 Nov; 75(2):445-57. PubMed ID: 16104049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and applications of the interfacial tension between water and organic or biological surfaces.
    van Oss CJ
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):2-9. PubMed ID: 16842983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions.
    van Oss CJ
    J Mol Recognit; 2003; 16(4):177-90. PubMed ID: 12898668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the salt-induced stabilization of pair and many-body hydrophobic interactions.
    Ghosh T; Kalra A; Garde S
    J Phys Chem B; 2005 Jan; 109(1):642-51. PubMed ID: 16851057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gelation: the role of sugars and polyols on gelatin and agarose.
    Shimizu S; Matubayasi N
    J Phys Chem B; 2014 Nov; 118(46):13210-6. PubMed ID: 25375260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased thermal stability of proteins in the presence of sugars and polyols.
    Back JF; Oakenfull D; Smith MB
    Biochemistry; 1979 Nov; 18(23):5191-6. PubMed ID: 497177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dewetting-induced globule-coil transitions of model polymers and possible implications high-temperature and low-pressure unfolding of proteins.
    Sumi T; Imazaki N; Sekino H
    J Chem Phys; 2010 Apr; 132(16):165101. PubMed ID: 20441309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of bulk and surface properties of some biocompatible hydrophobic polymers on the stability of methylene chloride-in-water mini-emulsions used to prepare nanoparticles by emulsification-solvent evaporation.
    Babak VG; Baros F; Boulanouar O; Boury F; Fromm M; Kildeeva NR; Ubrich N; Maincent P
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):194-207. PubMed ID: 17600692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced protein adsorption at solid interfaces by sugar excipients.
    Wendorf JR; Radke CJ; Blanch HW
    Biotechnol Bioeng; 2004 Sep; 87(5):565-73. PubMed ID: 15352054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycerol decreases the volume and compressibility of protein interior.
    Priev A; Almagor A; Yedgar S; Gavish B
    Biochemistry; 1996 Feb; 35(7):2061-6. PubMed ID: 8652547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of polyols on water structure in solution: a computational study.
    Politi R; Sapir L; Harries D
    J Phys Chem A; 2009 Jul; 113(26):7548-55. PubMed ID: 19432403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics of micelle formation in water, hydrophobic processes and surfactant self-assemblies.
    Fisicaro E; Compari C; Duce E; Biemmi M; Peroni M; Braibanti A
    Phys Chem Chem Phys; 2008 Jul; 10(26):3903-14. PubMed ID: 18688390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular anatomy of preferential interaction coefficients by elucidating protein solvation in mixed solvents: methodology and application for lysozyme in aqueous glycerol.
    Vagenende V; Yap MG; Trout BL
    J Phys Chem B; 2009 Aug; 113(34):11743-53. PubMed ID: 19653677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.