BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 21515357)

  • 1. Differential expression pattern-based prioritization of candidate genes through integrating disease-specific expression data.
    Xiao Y; Xu C; Ping Y; Guan J; Fan H; Li Y; Li X
    Genomics; 2011 Jul; 98(1):64-71. PubMed ID: 21515357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-class predictor based on a probabilistic model: application to gene expression profiling-based diagnosis of thyroid tumors.
    Yukinawa N; Oba S; Kato K; Taniguchi K; Iwao-Koizumi K; Tamaki Y; Noguchi S; Ishii S
    BMC Genomics; 2006 Jul; 7():190. PubMed ID: 16872506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes differentially expressed in prostate cancer.
    Eder IE; Bektic J; Haag P; Bartsch G; Klocker H
    BJU Int; 2004 May; 93(8):1151-5. PubMed ID: 15142130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies comparison of prostate cancer gene-expression profiles reveals genes associated with aggressive tumors.
    Kela I; Harmelin A; Waks T; Orr-Urtreger A; Domany E; Eshhar Z
    Prostate; 2009 Jul; 69(10):1034-44. PubMed ID: 19343735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Identification of the differentially expressed genes between primary breast cancer and paired lymph node metastasis through combining mRNA differential display and gene microarray].
    Feng YM; Gao G; Zhang F; Chen H; Wan YF; Li XQ
    Zhonghua Yi Xue Za Zhi; 2006 Oct; 86(39):2749-55. PubMed ID: 17199993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges in projecting clustering results across gene expression-profiling datasets.
    Lusa L; McShane LM; Reid JF; De Cecco L; Ambrogi F; Biganzoli E; Gariboldi M; Pierotti MA
    J Natl Cancer Inst; 2007 Nov; 99(22):1715-23. PubMed ID: 18000217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [High throughput screening and analysis of prostate cancer-related genes through mining databases].
    Wu G; Peng L; Jin FS; Li QS
    Ai Zheng; 2006 May; 25(5):645-50. PubMed ID: 16687091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer.
    Waghray A; Schober M; Feroze F; Yao F; Virgin J; Chen YQ
    Cancer Res; 2001 May; 61(10):4283-6. PubMed ID: 11358857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating protein-protein interaction networks with gene-gene co-expression networks improves gene signatures for classifying breast cancer metastasis.
    van den Akker EB; Verbruggen B; Heijmans BT; Beekman M; Kok JN; Slagboom PE; Reinders MJ
    J Integr Bioinform; 2011 Dec; 8(2):188. PubMed ID: 22180387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors.
    Yu K; Ganesan K; Miller LD; Tan P
    Clin Cancer Res; 2006 Jun; 12(11 Pt 1):3288-96. PubMed ID: 16740749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico identification of breast cancer genes by combined multiple high throughput analyses.
    Shen D; He J; Chang HR
    Int J Mol Med; 2005 Feb; 15(2):205-12. PubMed ID: 15647832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA copy number alterations and expression of relevant genes in triple-negative breast cancer.
    Han W; Jung EM; Cho J; Lee JW; Hwang KT; Yang SJ; Kang JJ; Bae JY; Jeon YK; Park IA; Nicolau M; Jeffrey SS; Noh DY
    Genes Chromosomes Cancer; 2008 Jun; 47(6):490-9. PubMed ID: 18314908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new molecular breast cancer subclass defined from a large scale real-time quantitative RT-PCR study.
    Chanrion M; Fontaine H; Rodriguez C; Negre V; Bibeau F; Theillet C; Hénaut A; Darbon JM
    BMC Cancer; 2007 Mar; 7():39. PubMed ID: 17338809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.
    Park I; Lee KH; Lee D
    Bioinformatics; 2010 Jun; 26(12):1506-12. PubMed ID: 20410052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-platform comparison and visualisation of gene expression data using co-inertia analysis.
    Culhane AC; Perrière G; Higgins DG
    BMC Bioinformatics; 2003 Nov; 4():59. PubMed ID: 14633289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data.
    Ma X; Lee H; Wang L; Sun F
    Bioinformatics; 2007 Jan; 23(2):215-21. PubMed ID: 17098772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of differentially expressed genes by meta-analysis of microarray data on breast cancer.
    Kondrakhin YV; Sharipov RN; Keld AE; Kolpakov FA
    In Silico Biol; 2008; 8(5-6):383-411. PubMed ID: 19374127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients.
    Györffy B; Lanczky A; Eklund AC; Denkert C; Budczies J; Li Q; Szallasi Z
    Breast Cancer Res Treat; 2010 Oct; 123(3):725-31. PubMed ID: 20020197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.