These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21515608)

  • 1. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings.
    Ueda MU; Mizumachi E; Tokuchi N
    Ann Bot; 2011 Jul; 108(1):169-75. PubMed ID: 21515608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allocation of nitrogen within the crown during leaf expansion in Quercus serrata saplings.
    Ueda MU; Mizumachi E; Tokuchi N
    Tree Physiol; 2009 Jul; 29(7):913-9. PubMed ID: 19448267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gross nitrogen retranslocation within a canopy of Quercus serrata saplings.
    Ueda MU
    Tree Physiol; 2012 Jul; 32(7):859-66. PubMed ID: 22643636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy.
    Migita C; Chiba Y; Tange T
    Tree Physiol; 2007 Jan; 27(1):63-70. PubMed ID: 17169907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions.
    Mizumachi E; Mori A; Osawa N; Akiyama R; Tokuchi N
    Ann Bot; 2006 Jul; 98(1):219-26. PubMed ID: 16709576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia.
    Yasumura Y; Ishida A
    J Plant Res; 2011 Jan; 124(1):115-23. PubMed ID: 20596744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nutrient dynamics in Quercus mongolica leaves at different canopy positions].
    Cheng XB; Han SJ; Zhang ZH; Zhou YM; Wang SQ; Wang XJ
    Ying Yong Sheng Tai Xue Bao; 2011 Sep; 22(9):2272-8. PubMed ID: 22126035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Seasonal changes of nitrogen and phosphorus and their translocation from leaves of ten tree species in central Japan].
    Xue L; Luo S; Tan T
    Ying Yong Sheng Tai Xue Bao; 2003 Jun; 14(6):875-8. PubMed ID: 12973987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses.
    Frost CJ; Hunter MD
    Oecologia; 2007 Feb; 151(1):42-53. PubMed ID: 17089141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence.
    Gilson A; Barthes L; Delpierre N; Dufrêne É; Fresneau C; Bazot S
    Tree Physiol; 2014 Jul; 34(7):716-29. PubMed ID: 25122620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oak loss increases foliar nitrogen, δ(15)N and growth rates of Betula lenta in a northern temperate deciduous forest.
    Falxa-Raymond N; Patterson AE; Schuster WS; Griffin KL
    Tree Physiol; 2012 Sep; 32(9):1092-101. PubMed ID: 22851552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees.
    Sendall KM; Reich PB
    Tree Physiol; 2013 Jul; 33(7):713-29. PubMed ID: 23872734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of partial defoliation on carbon and nitrogen partitioning and photosynthetic carbon uptake by two-year-old cork oak (Quercus suber) saplings.
    Cerasoli S; Scartazza A; Brugnoli E; Chaves MM; Pereira JS
    Tree Physiol; 2004 Jan; 24(1):83-90. PubMed ID: 14652217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean Quercus species.
    Silla F; Escudero A
    Oecologia; 2003 Jun; 136(1):28-36. PubMed ID: 12820065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands.
    Niinemets U; Tamm U
    Tree Physiol; 2005 Aug; 25(8):1001-14. PubMed ID: 15929931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest.
    Miyazawa Y; Kikuzawa K
    Tree Physiol; 2006 Feb; 26(2):249-56. PubMed ID: 16356922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Leaf Deployment Strategies in a Deciduous Savanna.
    February EC; Higgins SI
    PLoS One; 2016; 11(6):e0157833. PubMed ID: 27310398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alpha-tocopherol content of leaves of pedunculate oak (Quercus robur L.)--variation over the growing season and along the vertical light gradient in the canopy.
    Hansen U; Schneiderheinze J; Stadelmann S; Rank B
    J Plant Physiol; 2003 Jan; 160(1):91-6. PubMed ID: 12685051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variation of leaf ecophysiological traits within the canopy of Quercus petraea (Matt.) Liebl. trees.
    Szöllösi E; Oláh V; Kanalas P; Kis J; Fenyvesi A; Mészáros I
    Acta Biol Hung; 2010; 61 Suppl():172-88. PubMed ID: 21565775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.