These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 2151608)

  • 1. Post-mortem biochemistry of beagle dog lenses after treatment with Fluvastatin (Sandoz) for 2 years at different dose levels.
    Hockwin O; Evans M; Roberts SA; Stoll RE
    Lens Eye Toxic Res; 1990; 7(3-4):563-75. PubMed ID: 2151608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocimum sanctum modulates selenite-induced cataractogenic changes and prevents rat lens opacification.
    Gupta SK; Srivastava S; Trivedi D; Joshi S; Halder N
    Curr Eye Res; 2005 Jul; 30(7):583-91. PubMed ID: 16020293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The safety evaluation of fluvastatin, an HMG-CoA reductase inhibitor, in beagle dogs and rhesus monkeys.
    Hartman HA; Myers LA; Evans M; Robison RL; Engstrom RG; Tse FL
    Fundam Appl Toxicol; 1996 Jan; 29(1):48-62. PubMed ID: 8838639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism.
    Yokoyama T; Sasaki H; Giblin FJ; Reddy VN
    Exp Eye Res; 1994 Feb; 58(2):207-18. PubMed ID: 8157113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Inhibition of cholesterol synthesis and cataract].
    Hockwin O; Kojima M; Czubayko F; von Bergmann K
    Fortschr Ophthalmol; 1991; 88(4):393-5. PubMed ID: 1786929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [New regulatory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro].
    Krasnov MS; Gurmizov EP; Iamskova VP; Gundorova RA; Iamskov IA
    Vestn Oftalmol; 2005; 121(1):37-9. PubMed ID: 15759848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical changes in selenite cataract model measured by high-resolution MAS H NMR spectroscopy.
    Fris M; Tessem MB; Saether O; Midelfart A
    Acta Ophthalmol Scand; 2006 Oct; 84(5):684-92. PubMed ID: 16965502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of protein-glutathione mixed disulfide and thioltransferase in H2O2-induced cataract in cultured pig lens.
    Wang GM; Raghavachari N; Lou MF
    Exp Eye Res; 1997 May; 64(5):693-700. PubMed ID: 9245898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced, oxidized, and protein-bound glutathione concentrations in normal and cataractous lenses in the dog.
    Gelatt KN; Bruss M; DeCostanza SM; Noonan NE; Das ND; Wolf ED
    Am J Vet Res; 1982 Jul; 43(7):1215-7. PubMed ID: 7103204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nicotine exposure during gestation on neonatal rat crystalline lenses.
    Evereklioglu C; Alaşehirli B; Sari I; Cengiz B; Bagci C
    Eye (Lond); 2004 Jan; 18(1):67-73. PubMed ID: 14707970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of digitalis-like compounds on rat lenses.
    Lichtstein D; Levy T; Deutsch J; Steinitz M; Zigler JS; Russell P
    Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):407-13. PubMed ID: 9950600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The early biochemical changes of cataractous lenses of rats cultured in vitro].
    Dong D; Lu A; Liu Y; Jia W; Hou W
    Zhonghua Yan Ke Za Zhi; 2000 Sep; 36(5):344-7, 21. PubMed ID: 11853625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of thioltransferase and thioredoxin/thioredoxin reductase systems in cultured porcine lenses under oxidative stress.
    Moon S; Fernando MR; Lou MF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3783-9. PubMed ID: 16186363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in redox ratio and protein glycation in precataractous lens from fructose-fed rats: effects of exogenous L-carnitine.
    Balasaraswathi K; Rajasekar P; Anuradha CV
    Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):168-73. PubMed ID: 17941890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age and the control of glycolysis in the rat lens.
    Gillis MK; Chylack LT; Cheng HM
    Invest Ophthalmol Vis Sci; 1981 Apr; 20(4):457-66. PubMed ID: 6452426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressive effects of thyroxine on glucocorticoid (gc)-induced metabolic changes and cataract formation on developing chick embryos.
    Kosano H; Watanabe H; Nishigori H
    Exp Eye Res; 2001 Jun; 72(6):643-8. PubMed ID: 11384152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.