These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21516287)

  • 21. A novel Raman spectroscopic method for detecting traces of blood on an interfering substrate.
    Kistenev YV; Borisov AV; Samarinova AA; Colón-Rodríguez S; Lednev IK
    Sci Rep; 2023 Apr; 13(1):5384. PubMed ID: 37012280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Massively parallel sequencing of microRNA in bloodstains and evaluation of environmental influences on miRNA candidates using realtime polymerase chain reaction.
    Fang C; Zhao J; Li J; Qian J; Liu X; Sun Q; Liu W; Tian Y; Ji A; Wu H; Yan J
    Forensic Sci Int Genet; 2019 Jan; 38():32-38. PubMed ID: 30321749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel approach to obtaining reliable PCR results from luminol treated bloodstains.
    Della Manna A; Montpetit S
    J Forensic Sci; 2000 Jul; 45(4):886-90. PubMed ID: 10914590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a radioimmunoassay technique for the detection of human hemoglobin in dried bloodstains.
    Quarino L; Kobilinsky L
    J Forensic Sci; 1988 Nov; 33(6):1369-78. PubMed ID: 3204343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age estimation of bloodstains using smartphones and digital image analysis.
    Thanakiatkrai P; Yaodam A; Kitpipit T
    Forensic Sci Int; 2013 Dec; 233(1-3):288-97. PubMed ID: 24314532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Raman "spectroscopic clock" for bloodstain age determination: the first week after deposition.
    Doty KC; McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2016 Jun; 408(15):3993-4001. PubMed ID: 27007735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the effect of body fluid mixture on the relative expression ratio of blood-specific RNA markers.
    Alshehhi S; Haddrill PR
    Forensic Sci Int; 2020 Feb; 307():110116. PubMed ID: 31881371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of a visualization assay for blood on forensic evidence.
    Vandewoestyne M; Lepez T; Van Hoofstat D; Deforce D
    J Forensic Sci; 2015 May; 60(3):707-11. PubMed ID: 25703033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Esterase D phenotyping of bloodstains and hair roots by low voltage isoelectric focusing.
    Yuasa I; Tamaki N; Inoue T; Okada K
    Forensic Sci Int; 1985 May; 28(1):63-7. PubMed ID: 4018683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison study of the detection of bloodstains on painted and cleaned surfaces with luminol.
    Brenzini V; Pathak R
    Forensic Sci Int; 2018 Aug; 289():75-82. PubMed ID: 29935489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy.
    Lin H; Zhang Y; Wang Q; Li B; Huang P; Wang Z
    Sci Rep; 2017 Oct; 7(1):13254. PubMed ID: 29038589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification--Blood).
    Schweers BA; Old J; Boonlayangoor PW; Reich KA
    Forensic Sci Int Genet; 2008 Jun; 2(3):243-7. PubMed ID: 19083828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fundamental study of porcine drip bloodstains on fabrics: Blood droplet impact and wicking dynamics.
    Wang F; Gallardo V; Michielsen S; Fang T
    Forensic Sci Int; 2021 Jan; 318():110614. PubMed ID: 33307473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical enhancement techniques of bloodstain patterns and DNA recovery after fire exposure.
    Tontarski KL; Hoskins KA; Watkins TG; Brun-Conti L; Michaud AL
    J Forensic Sci; 2009 Jan; 54(1):37-48. PubMed ID: 19018938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of argon laser light, alternate source light, and cyanoacrylate fuming on DNA typing of human bloodstains.
    Shipp E; Roelofs R; Togneri E; Wright R; Atkinson D; Henry B
    J Forensic Sci; 1993 Jan; 38(1):184-91. PubMed ID: 8093896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis.
    Cavalcanti DR; Silva LP
    Forensic Sci Int; 2019 Aug; 301():254-262. PubMed ID: 31181409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic changes and prediction of time since deposition of blood stains.
    Zhang J; Liu K; Wang R; Chang J; Xu X; Du M; Ye J; Yang X
    Forensic Sci Int; 2024 Feb; 355():111930. PubMed ID: 38271828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of bloodstains: false negative results of the benzidine test.
    Verdú Pascual FA; Gisbert Grifo MS
    Forensic Sci Int; 1995 Jan; 71(2):85-6. PubMed ID: 7868011
    [No Abstract]   [Full Text] [Related]  

  • 39. Group-specific component content in bloodstains. An ageing and distribution study.
    Horscroft GM; Westwood SA
    J Forensic Sci Soc; 1986; 26(4):275-80. PubMed ID: 3760812
    [No Abstract]   [Full Text] [Related]  

  • 40. On the detection of blood groups from bloodstains containing detergent.
    Tomita K
    Hiroshima J Med Sci; 1967 Mar; 16(1):67-80. PubMed ID: 5582249
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.