These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 21516348)
1. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Serôdio J; Lavaud J Photosynth Res; 2011 May; 108(1):61-76. PubMed ID: 21516348 [TBL] [Abstract][Full Text] [Related]
2. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
3. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. Lacour T; Babin M; Lavaud J J Phycol; 2020 Apr; 56(2):245-263. PubMed ID: 31674660 [TBL] [Abstract][Full Text] [Related]
4. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. Tardy F; Havaux M J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663 [TBL] [Abstract][Full Text] [Related]
5. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
6. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Lokstein H; Tian L; Polle JE; DellaPenna D Biochim Biophys Acta; 2002 Feb; 1553(3):309-19. PubMed ID: 11997140 [TBL] [Abstract][Full Text] [Related]
7. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Nilkens M; Kress E; Lambrev P; Miloslavina Y; Müller M; Holzwarth AR; Jahns P Biochim Biophys Acta; 2010 Apr; 1797(4):466-75. PubMed ID: 20067757 [TBL] [Abstract][Full Text] [Related]
8. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Kohzuma K; Hikosaka K Biochem Biophys Res Commun; 2018 Mar; 498(1):52-57. PubMed ID: 29501490 [TBL] [Abstract][Full Text] [Related]
9. Photosynthetic properties of an Arabidopsis thaliana mutant possessing a defective PsbS gene. Peterson RB; Havir EA Planta; 2001 Nov; 214(1):142-52. PubMed ID: 11762164 [TBL] [Abstract][Full Text] [Related]
10. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. Lavaud J; Rousseau B; Etienne AL FEBS Lett; 2002 Jul; 523(1-3):163-6. PubMed ID: 12123825 [TBL] [Abstract][Full Text] [Related]
11. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333 [TBL] [Abstract][Full Text] [Related]
12. An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Lavaud J; Lepetit B Biochim Biophys Acta; 2013 Mar; 1827(3):294-302. PubMed ID: 23201475 [TBL] [Abstract][Full Text] [Related]
13. Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Lavaud J; Rousseau B; Etienne AL Biochemistry; 2003 May; 42(19):5802-8. PubMed ID: 12741838 [TBL] [Abstract][Full Text] [Related]
14. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. Brunet C; Chandrasekaran R; Barra L; Giovagnetti V; Corato F; Ruban AV PLoS One; 2014; 9(1):e87015. PubMed ID: 24475212 [TBL] [Abstract][Full Text] [Related]
15. The peculiar NPQ regulation in the stramenopile Phaeomonas sp. challenges the xanthophyll cycle dogma. Berne N; Fabryova T; Istaz B; Cardol P; Bailleul B Biochim Biophys Acta Bioenerg; 2018 Jul; 1859(7):491-500. PubMed ID: 29625087 [TBL] [Abstract][Full Text] [Related]
16. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related]
17. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Cruz S; Goss R; Wilhelm C; Leegood R; Horton P; Jakob T J Exp Bot; 2011 Jan; 62(2):509-19. PubMed ID: 20876335 [TBL] [Abstract][Full Text] [Related]
18. Rapid light-response curves of chlorophyll fluorescence in microalgae: relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Serôdio J; Vieira S; Cruz S; Coelho H Photosynth Res; 2006 Oct; 90(1):29-43. PubMed ID: 17111236 [TBL] [Abstract][Full Text] [Related]
19. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. Acebron K; Matsubara S; Jedmowski C; Emin D; Muller O; Rascher U New Phytol; 2021 Feb; 229(4):2104-2119. PubMed ID: 33020945 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]