BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 21516386)

  • 1. Microfluidic platform for the study of Caenorhabditis elegans.
    Shi W; Wen H; Lin B; Qin J
    Top Curr Chem; 2011; 304():323-38. PubMed ID: 21516386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.
    Hulme SE; Whitesides GM
    Angew Chem Int Ed Engl; 2011 May; 50(21):4774-807. PubMed ID: 21500322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channeling the worm: microfluidic devices for nematode neurobiology.
    Lockery S
    Nat Methods; 2007 Sep; 4(9):691-2. PubMed ID: 17762874
    [No Abstract]   [Full Text] [Related]  

  • 4. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans.
    Chronis N; Zimmer M; Bargmann CI
    Nat Methods; 2007 Sep; 4(9):727-31. PubMed ID: 17704783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Albrecht DR
    Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-scale and microfluidic devices for neurobiology.
    Taylor AM; Jeon NL
    Curr Opin Neurobiol; 2010 Oct; 20(5):640-7. PubMed ID: 20739175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic worm-chip for in vivo analysis of neuronal activity upon dynamic chemical stimulations.
    Wang J; Feng X; Du W; Liu BF
    Anal Chim Acta; 2011 Sep; 701(1):23-8. PubMed ID: 21763804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caenorhabditis elegans: a versatile platform for drug discovery.
    Artal-Sanz M; de Jong L; Tavernarakis N
    Biotechnol J; 2006 Dec; 1(12):1405-18. PubMed ID: 17109493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.
    Lockery SR; Lawton KJ; Doll JC; Faumont S; Coulthard SM; Thiele TR; Chronis N; McCormick KE; Goodman MB; Pruitt BL
    J Neurophysiol; 2008 Jun; 99(6):3136-43. PubMed ID: 18337372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity.
    Mori I; Sasakura H; Kuhara A
    Curr Opin Neurobiol; 2007 Dec; 17(6):712-9. PubMed ID: 18242074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates.
    Yanik MF; Rohde CB; Pardo-Martin C
    Annu Rev Biomed Eng; 2011 Aug; 13():185-217. PubMed ID: 21756142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans.
    Shi W; Wen H; Lu Y; Shi Y; Lin B; Qin J
    Lab Chip; 2010 Nov; 10(21):2855-63. PubMed ID: 20882233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Si elegans project at the interface of experimental and computational Caenorhabditis elegans neurobiology and behavior.
    Petrushin A; Ferrara L; Blau A
    J Neural Eng; 2016 Dec; 13(6):065001. PubMed ID: 27739402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control.
    Le KN; Zhan M; Cho Y; Wan J; Patel DS; Lu H
    Commun Biol; 2020 Jun; 3(1):297. PubMed ID: 32523044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the neuronal effects of ethanol on C. elegans by in vivo fluorescence imaging on a microfluidic chip.
    Wang Y; Wang J; Du W; Feng XJ; Liu BF
    Anal Bioanal Chem; 2011 Apr; 399(10):3475-81. PubMed ID: 20842350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration.
    Suzuki M; Sakashita T; Hattori Y; Yokota Y; Kobayashi Y; Funayama T
    J Neurosci Methods; 2018 Aug; 306():32-37. PubMed ID: 29859879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated imaging of C. elegans behavior.
    Cronin CJ; Feng Z; Schafer WR
    Methods Mol Biol; 2006; 351():241-51. PubMed ID: 16988438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system.
    Crane MM; Chung K; Lu H
    Lab Chip; 2009 Jan; 9(1):38-40. PubMed ID: 19209332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms.
    Clausell-Tormos J; Lieber D; Baret JC; El-Harrak A; Miller OJ; Frenz L; Blouwolff J; Humphry KJ; Köster S; Duan H; Holtze C; Weitz DA; Griffiths AD; Merten CA
    Chem Biol; 2008 May; 15(5):427-37. PubMed ID: 18482695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the neural and molecular mechanisms of C. elegans behavior.
    Schafer WR
    Curr Biol; 2005 Sep; 15(17):R723-9. PubMed ID: 16139205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.